Some properties for the first eigenvalue of nonlinear weighted problems and applications

Abstract
We prove some properties of the first eigenvalue of the problem \begin{array}{ll} -{\cal A}_p u \colon = - \hbox{\rm div\ } \Big( (A\D u, \D u)^{(p-2)/2}A\D u\Big)= \lambda V(x) |u|^{p-2} u & \hbox{\rm in\ } \O \\ \quad u=0 & \hbox{\rm on\ } \partial \O . \end{array} In particular, the first eigenvalue is shown to be isolated. Moreover, existence and non existence results of solutions in W^{1, p}_0(\Omega) for nonlinear weighted equations with exponential growth are obtained.
Anno
2004
Autori IAC
Tipo pubblicazione
Altri Autori
Alberico A.
Editore
Societá nazionale di scienze lettere ed arti.
Rivista
Rendiconto della Academia delle scienze fisiche e matematiche