L-Splines and Viscosity Limits forWell-Balanced Schemes Acting on Linear Parabolic Equations

Abstract
Well-balanced schemes, nowadays mostly developed for both hyperbolic and kinetic equations, are extended in order to handle linear parabolic equations, too. By considering the variational solution of the resulting stationary boundary-value problem, a simple criterion of uniqueness is singled out: the C1 regularity at all knots of the computational grid. Being easy to convert into a finite-difference scheme, a well-balanced discretization is deduced by defining the discrete time-derivative as the defect of C1 regularity at each node. This meets with schemes formerly introduced in the literature relying on so-called L-spline interpolation of discrete values. Various monotonicity, consistency and asymptotic-preserving properties are established, especially in the under-resolved vanishing viscosity limit. Practical experiments illustrate the outcome of such numerical methods.
Anno
2018
Autori IAC
Tipo pubblicazione
Altri Autori
Laurent Gosse
Editore
Reidel
Rivista
Acta applicandae mathematicae