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A real world example

(credit to https://arxiv.org/pdf/quant-ph/9809016.pdf)

We want to find the factors of N = 21

1. pick an integer a < N (a = 11);

2. pick m such that N2 < 2m < 2 ∗N2. In our case m = 9;

3. compute using quantum parallelism f(k) = ak mod N

for all integers from 0 to 2m − 1 (i.e., 511)

(a) start with an m-qubit state |00...0〉
(b) apply the Hadamard transformation to get a superposition

1√
2m

(|00...0〉+ |00...1〉+ ...+ |11...1〉 =
1√
2m

2m−1∑
k=0

|k〉

corresponding to all integers 0 ≤ k < 2m
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(c) add a 5-bit register |0〉 for the output of the function.

the function is encoded in the quantum state

1√
2m

2m−1∑
k=0

|k, f(k)〉

in our example a total of 14 qubits are required

(9 for k and 5 for the output of the function)

4. we need a state whose amplitude has the same period as f

(a) measure the last dlog2Ne qubits

(b) a random value u is obtained

what is interesting is just the effect the measurement has on

our set of superpositions.
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The state after measurement is

C
∑
k

g(k) |k, u〉

C is a scale factor we can ignore whereas

g(k) =

1 if f(x) = u

0 otherwise

• the k’s that actually appear in the sum differ from each

other by multiples of the period;

• if we could measure two successive k’s in the sum it would

be trivial to get the period;

• unfortunately the laws of quantum physics permit only one

measurement!
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5. Suppose that random measurement of the superposition gives 8.

x(k) =


√
r/2m if k mod r = 3

0 otherwise

(3 is the min k > 0 such that 11k mod 21 = 8)

the state clearly shows the periodicity of f
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6. if 2m is an exact multiplier of r, the result of the QFT is exactly

c(k)

 6= 0 if k mod 2m

r = 0

= 0 otherwise

(the Fourier transform of a state with period r is a state with period 2m

r
).

Otherwise, the transform approximates the exact case and most

of the amplitude is attached to integers close to multiples of 2m

r .
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7. measure the state of the QFT in the standard basis.

(suppose the result is v = 427)

When the period r is a power of 2, then v = j 2
m

r for some j and

it is trivial to find r.

When the period is not a power of 2, it is necessary to resort to

the continued fraction expansion of v
2m

This gives as a result r = 6 (we are “lucky” is an even number)

Remember that either 11
6
2 − 1 = 1330 or 11

6
2 + 1 = 1332 must

have a common factor with N = 21.

Since gcd(21,1330)=7 and gcd(21,1332)=3, we have done.

Easy, is it not?
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What could go wrong?

1. the value v was not close enough to a multiple of 2m

r ;

2. the period r and the multiplier j could have had a common factor

so that p was actually a factor of the period not the period itself;

3. the period r is odd;

4. few other...

Shor shows that few repetitions of the algorithm yields a factor of N

with probability > 0.5.
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Two remarks about Shor’s algorithm

1. The best known classical factoring algorithms (e.g., Quadratic

Field Sieve and Number Field Sieve) do much better than period

finding methods attack by exploiting additional structures in the

problem;

2. what we can currently prove is that Shor’s algorithm achieves

an exponential speedup over any classical factoring algorithm

that works via reduction to period-finding.
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Grover’s algorithm

A large class of problems can be specified as search problems

• find some xs in a set of possible solutions such that statement

P(xs) is true (xs can be, but it is not necessarily, unique)

• a basic NP-hard search problem

– in the general case the fastest known classical algorithm is the

exhaustive search;

– with N possible inputs and n the number of bits required to

represent the input, the search requires O(2n) steps

• Grover’s algorithm solves the problem in O(2
n
2 ) steps.
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• Let UP be the quantum gate that implements the classical

function P (x) for testing the truth of the statement

UP : |x, 0〉 = |x, P (x)〉

• Compute P for all possible inputs xi, by applying Up to a

register containing the superposition 1√
2n

∑n−1
x=0 |x〉

(plus the register for the “output”)

1√
2n

n−1∑
x=0

|x, P (x)〉

suppose there is a single x0 such that P (x0)

• the amplitude of such a state is 1√
2n

;

• the probability that a random measurement reports x0 is only

2−n exactly as in the classic case. What could be our move?
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• change the quantum state so as to greatly increase the amplitude

of |x0, 1〉 and decrease the amplitude of all |x, 0〉
– thanks to the amplitude change, if we measure the last qubit (i.e.,

the output), there is a high probability that the result will be 1;

– if this is the case, a further measurement of the remaining bits

(i.e., of the input) provides the solution.

– how do we change the quantum state to that purpose?

• Grover’s algorithm is the answer
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1. prepare a register of qubits containing a superposition of all

possible values xi ∈ [0...2n − 1];

2. compute P (xi) on this register;

• this may sound weird but, actually, it is (relatively) simple

(no more difficult w.r.t. the classic case, although slower)

3. change amplitude aj to −aj for xj such that P (xj) = 1;

4. apply inversion about the average to increase amplitude of xj
with P (xj) = 1;

5. repeat π
4

√
2n times the steps 2 through 4;

6. read the result.

Steps 2 through 4 constitute the Grover’s diffusion operator.

It is not apparent why this algorithm works... but a couple of

pictures may help
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• After the change of amplitude we have a situation like this

• and after the inversion about the average we have
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The diffusion operator D has the following effect

D :
∑
j

αj |xj〉 →
∑
j

(2µ− αj) |xj〉

on the superposition xj (µ is the mean amplitude).

• any amplitude µ+ δ gets turned into µ− δ;

• most of the amplitudes are a tiny bit larger than the mean

– they will become a tiny bit less than the mean by applying D;

• the state we are looking for will be affected more strongly

– its amplitude is (significantly) less than the mean, and so will

become (significantly) greater than the mean!

The diffusion operator causes an interference effect on the states

which skims an amplitude of 1√
n

from all the wrong answers and add

it to the right one(s).
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It is possible to prove that Grover’s algorithm is “optimal”

(up to a constant factor).

Moreover, if there is only a single x0 such that P (x0) is true

• after π
8

√
2n iterations the failure rate is 0.5;

• after π
4

√
2n iterations the failure rate drops to 2−n;

• after π
2

√
2n iterations the failure rate is close to 1!

This should be no surprising:

• quantum procedures are unitary transformations (in other words,

rotations in a complex space);

• repeated applications of a quantum transform may rotate the

state closer and closer to the desired state;

• eventually the rotation goes beyond the desired state and then

the distance (re)starts to increase if there are further rotations.
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A geometrical perspective on Grover’s algorithm

(https://learn.microsoft.com/en-us/azure/quantum/concepts-grovers)

Suppose |bad〉 is the superposition of all states such that P (x) is false;

|bad〉 =
1√

2n − 1

∑
x:P (x)=0

|x〉

|good〉 is the state such that P (x) is true; |bad〉 and |good〉:

• are mutually exclusive sets and orthogonal;

• form the orthogonal basis of a plane in the vector space
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Suppose |ψ〉 is an arbitrary state that lives in the plane spanned by

|good〉 and |bad〉. Then

|ψ〉 = α |good〉+ β |bad〉

(α and β are real numbers). Let’s introduce the reflection operator

R|ψ〉 = 2 |ψ〉 〈ψ| − I (reflection w.r.t. the direction of |ψ〉).

If you take the orthogonal basis of the plane formed by |ψ〉 and its

orthogonal complement |ψ⊥〉, any other state |ξ〉 can be decomposed

in

|ξ〉 = µ |ψ〉+ ν |ψ⊥〉

if we apply R|ψ〉 to |ξ〉

R|ψ〉 |ξ〉 = µ |ψ〉 − ν |ψ⊥〉

That is R|ψ〉 inverts the component orthogonal to |ψ〉 but leaves the

|ψ〉 component unchanged
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Each Grover’s iteration is a composition of R|bad〉 and R|all〉
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The combined effect of each Grover’s iteration is a counterclockwise

rotation of an angle 2θ.

• θ is simply the angle between |all〉 and |bad〉.
Assuming there is a single |good〉 state

θ = arccos (〈all| |bad〉) = arccos (

√
2n − 1

2n
)

• the angle between the state of the register and the |good〉 state

decreases with each iteration

• the probability that the measurement shows the good answer is

| 〈good| |register〉 |2

• it turns out to be a function of k (number of Grover’s iterations)

Psuccess = sin2
[
(2k + 1) arccos (

√
2n − 1

2n
)
]
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• koptimal is the smallest positive integer that (approximately)

maximizes the success probability function

koptimal =
π

4 arccos
√

1− 2−n
− 1

2
=
π

4

√
2n − 1

2
−O(

√
2−n)

The sequence of Grover’s iterations can be viewed as a sort of

“backward” quantum random walk:

• from a distributed state

• back to a state focused around the single correct component

A classical random walk explores an area proportional to the square

root of the number of steps;

A quantum random walk explores an area proportional to the

number of steps.

This difference provides a clue about the quadratic speedup.
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QC in practice (?)

So far we have assumed (implicitly...) that the qubits are error free.

Actually qubits fail (classic bits fail as well!).

Besides that, the decoherence phenomenon also hinders QC, whereas

there is no equivalent phenomenon in classical computing.
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The decoherence phenomenon

When the quantum system is not perfectly isolated, the apparatus

itself influences the QC procedure

• the transformations required during the computations are not

longer unitary;

• the arising of the decoherence crushes the constructive and

destructive interference;

The decoherence time must be sufficiently longer than the expected

execution time of the computation.
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Errors in computing

The existence of computational errors is not limited to the quantum

realm.

• Since the 50’s of the XX century, Von Neumann showed that a

computer with noisy components can work reliably by employing

sufficient redundancy;

• it is not straightforward to use the same approach to neutralize

errors in a quantum computer;

• quantum error correction requires many (e.g., one thousand)

additional imperfect physical qubits to provide one reliable logical

qubit (like those we considered previously).
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Quantum Algorithms

1. Amplitude Amplification (Grover’s search). Quadratic speedup;

2. Phase Estimation (eigenvalues of a unitary transformation).

Quadratic speedup;

3. Quantum Fourier Transform. Exponential speedup;

4. Hamiltonian simulation (the original Feynman’s idea).

Exponential speedup.

Is quadratic speedup enough?

(credit to Hoefler Torsten

https://www.youtube.com/watch?v=0QuUFyCKUgY)
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What if a Quantum Computer

• had 10000 logical qubits (remember, this means from 10 to 1000

more physical bits);

• had 10 µs logical gate time;

• could simultaneously perform any gate operation on all qubits in

a single cycle;

• had all-to-all connectivity.

What is the I/O bandwidth?

10000× 1(bit/gate)/(10× 1−6s) = 1Gbit/s
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How fast can we evaluate something on a QC?

Let us consider just multiplications (as if addition were free) and

ignore all overheads. We end up with

Operation throughput Quantum Computer GPU

16-bit floating point 10.5 Kop/s 195 Top/s

32-bit integer 0.83 Kop/s 9.75 Tops/s

boolean logical 235 Kop/s 4992 Tops/s

Grover’s algorithm requires
√
N invocations instead of N .

Since the GPU is (very roughly) ∼ 2× 1010 faster.

What is the N break-even value?

∼ 4× 1020
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Summary and Conclusions

• Quantum Computing is not a new paradigm

(it has been around for, at least, 40 years);

• QC does not evaluate all possible solutions at the same time;

• QC requires a suitable formulation of the problems to exploit the

properties of the superposition;

• Only in a few cases QC may offer an exponential speedup;

• Current technology does not support practical usage of QC for

solving real-world problems;

• However, never forget that the “idea” of digital cash has been

floating around for about 25 years before Bitcoin appeared...
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