
M. Bernaschi: A gentle introduction to QC

Solving the Deutsch’s oracle problem

The answer to the first question is apparent

• two queries are enough to determine what the function does

– there are only two possible alternatives for the input bit

What does it happen using a quantum computer?

Is quite natural to forecast that just one query is required!
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QC: Much Ado About Nothing?

As a matter of fact, that is a wrong intuition.

• remember that quantum computers don’t really compute with

all values simultaneously

• in the end, a qubit collapses to a single bit of information:

– a single bit of information is not enough to uniquely identify

one out of four functions

• since we need two bits, this problem actually requires two queries

also on a quantum computer!

End of the game?
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A problem more suitable to QC

Suppose we are interested to know whether the function is

• constant: constant 0 or constant 1 (regardless of the input)

or

• variable: identity or negation

Since there are two categories, a single bit is enough to identify the

answer

• nevertheless, this problem takes two queries on a classical

computer.

• how many on a quantum computer?
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Here, at last, QC advantage

On a QC a single query is enough to tell whether the function is

constant or variable

• this undeniably outperforms a classical computer

Finally, we are going to leverage the features of the superposition!

Let’s start defining each of the four functions acting on a single bit

on a quantum computer

• first issue: we are using a QC model in which computations must

be reversible

(https://physics.stackexchange.com/questions/704625/quantum-and-classical-

physics-are-reversible-yet-quantum-gates-have-to-be-rever);

• the constant functions are not reversible.
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Making QC operations reversible

An additional output bit to which the function action is applied

provides what we need

From

|x�
Input

BB
f(|x�)
Output

to

Input |x�

Output|0�
BB

f(|x�)Output

|x� Input

• now there are two qubits and

it is necessary to rewire the

black box;

• the input qubit is unchanged;

• the value of the function on

the input qubit is written to

the output qubit;

• the black box assumes that the

output input is zero.
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The four one-bit operations

constant 0:

Input |x�

Output|0�
BB

|0� Output

|x� Input

basically this corresponds to a void black box

Input

Output
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Moving to constant 1 we have:

Input |x�

Output|0�
BB

|1� Output

|x� Input

corresponding to a single negation

Input

Output
X
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The identity is a bit more complex:

Input |x�

Output|0�
BB

|x� Output

|x� Input

here the input bit plays the role of control bit;

Input (control)

Output (target)

Where represents a CNOT gate.
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Once the identity is well understood, the negation becomes simple:

Input |x�

Output|0�
BB

|¬x� Output

|x� Input

again the input bit plays the role of control bit

Input (control)

Output (target)
X

And the one-query solution to the Deutsch’s oracle problem is...
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A quantum circuit solving the Deutsch’s problem

Input |0� X H

Output|0�
X H

BB

H M

H M

where M represents a measurement gate.

We are going to show that:

• if the black-box function is constant, the measure returns |11�;

• if the black-box function is variable, the measure returns |01�.
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The algorithm is the following:

1. initialize qubits to |0�;

2. bit flip them: both become |1�;

3. apply the Hadamard gate to put them into equal superposition;

4. send them into the black-box.

One of the four circuits we described above is applied.

5. apply again the Hadamard gate;

6. finally measure them.
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Steps two and three correspond to two moves along the unit circle.
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if the black box is constant 0, it does nothing.

The post-processing is a single Hadamard gate. We are back to |11�.
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If the black box is constant 1, there is an additional negation
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Still |11� at the end.
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The first variable function is identity (based on the CNOT gate).
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The final result is |01�.
Let’s look at the details of step 4 in matrix form.

49



M. Bernaschi: A gentle introduction to QC
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When we finally apply the Hadamard operator we obtain

|0� (starting from




1√
2

1√
2


)

and

|1�

(starting from




1√
2

−1√
2


)

so the final state is |01�.
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negation requires an additional bit flip after the CNOT
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When we finally apply the Hadamard operator we obtain
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|0� (starting from




−1√
2

−1√
2


)

and

|1� (starting from




−1√
2

1√
2


), so the final state is again |01�.

It is possible to determine whether the function is constant or

variable by using a single query in a QC setting!
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A layman explanation

• The difference within the categories (a negation) is neutralized:

• the only difference between constant zero and constant one is a

single negation gate;

• when the negation gate is applied in a superposed state, it does

not really have any effect;

• the effect of the negation gate is neutralized and this, in turn,

neutralizes the difference within the categories.
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The difference between the categories (a CNOT) is magnified:

• the variable functions have a CNOT and the constant functions

do not

Most of the power of QC comes from the chance of changing the

action of various logic gates by leveraging suitable superposition

states.
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What next?

The solution to the Deutsch’s problem appears, somehow, contrived

and over-killing but...

• it can be easily extended to the case of a n−bit black box

(Deusch-Josza problem);

• on a classic computer the problem requires a number of queries

that is O(2n);

• with a quantum computer it can be solved again with a single

query

so it shows the route to an exponential speedup!
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From Deutsch to Shor

• A further variant is the Simon’s periodicity problem

– again there is a black box and the problem is to figure out

some properties of the function that the black box

implements.

• The famous Shor’s algorithm for integer factorization, is built on

the idea of finding the period of a sequence

– the problem may be formulated in terms of a decision

problem exactly like determining whether the black box has a

particular property or not.
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Integer Factorization

Given an integer N , find two integers 1 < P,Q such that N = P ×Q.

N requires n bits to be represented

(N = 4294967296 requires n = 32 bits)

• More difficult when P and Q are primes with roughly the same

number of bits.

No algorithm with polynomial-in-n time complexity is known

(but there is no proof that it does not exist!)

The straightforward algorithm that tries all factors from 2 to
√
N

takes time exponential in n.

The most efficient algorithm has a complexity O(exp ( 3

�
64
3 n(log n)2))

It is not feasible to factor integer with more than 1000 bits.
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A different viewpoint

Let’s start with a “guess” 1 < g < N

There are two alternatives:

1. g is a factor of N or it shares a common factor with N , that is

the g.c.d.(g,N) > 1

(we are lucky and the problem is solved!)

2. g is neither a factor of N nor shares a common factor

This is the interesting part...

It is “well known” (Euler) that given A and B (both integers), there

exists a power p and a multiple m (both integers) such that

Ap = m×B + 1
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For instance, suppose we take 3 and 7:

32 = 9 = 1× 7 + 2

33 = 27 = 3× 7 + 6

34 = 81 = 11× 7 + 4

35 = 243 = 34× 7 + 5

36 = 729 = 104× 7 + 1

So we can write

gp = m×N + 1

then

gp − 1 = m×N

Assume (1) p is even then

(g
p
2 + 1)× (g

p
2 − 1) = m×N

((g
p
2 + 1)× (g

p
2 − 1)) mod N = 0

59



M. Bernaschi: A gentle introduction to QC

Assume (2) neither (g
p
2 + 1) nor (g

p
2 − 1) is a multiple of N

(see at the bottom for both “assumptions”)

Then we have learned a factor of N . Why?

• N = P ×Q

• either P divides (g
p
2 + 1) and Q divides (g

p
2 − 1) or

the other way around

Q divides (g
p
2 + 1) and P divides (g

p
2 − 1)

Number theory says that: for any N , if g is relatively prime to N

then, with probability at least 3
8

• p is even;

• neither (g
p
2 + 1) nor (g

p
2 − 1) is a multiple of N ;

(don’t ask me to demonstrate that!)
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So the problem is finding p.

Consider the modular exponentiation sequence ak = gk mod N

obviously ak may assume only the values 0, ..., N − 1.

So there are i and j such that ai = aj

assuming j > i, ak has a period r = j − i that (if it is even)

corresponds to the p we are looking for. Why?

gr mod N = 1

(because g0 = 1)

(gr − 1) mod N = 0

So, if we find the period r we can easily solve the integer factorization

problem. Sounds good...
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Unfortunately, finding the period of the sequence gk is not easier

than directly searching for factors of N on a classic computer!

(do you have a clue about the reason?)

But a Quantum Fourier Transform (QFT) allows to find the period

in polynomial time!
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The magic (Q)FT

(an absolutely not rigorous reminder...)

• In general a Fourier transform maps from the time domain to the

frequency domain;

• Fourier transforms map functions of period r to functions which

have non-zero values only at multiples of the frequency 2π
r ;

• the Discrete Fourier Transform (DFT) operates on N equally

spaced samples in the interval [0, 2π) and can be implemented as

a (symmetric) matrix-vector product where the Fourier matrix

Fn is defined as
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FN =
1√
N




1 1 1 . . . 1

1 ω1
N ω2

N . . . ωN−1
N

1 ω2
N ω4

N . . . ω
2(N−1)
N

...
...

...
...

1 ωN−1
N ω

2(N−1)
N . . . ω

(N−1)2

N




with

ωN = e−i2π/N

• The DFT of a (sampled) function of period r is a function

concentrated near multiples of N
r

– if the period r divides N evenly, the result is a function

having non-zero values only at multiples of N
r

– otherwise there will be non-zero terms at integers close to

multiples of N
r
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Suppose f(x) = sin (3 ∗ x) and N = 9.

Index f DFT

0 0 (0, 0i)

1 0.866 (0,0i)

2 -0.866 (0,0i)

3 0 (0,-4.5i)

4 0.866 (0,0i)

5 -0.866 (0,0i)

6 0 (0,4.5i)

7 0.866 (0,0i)

8 -0.866 (0,0i)

• When N is a power of 2, the DFT may be computed in a very

efficient way becoming a Fast Fourier Transform
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– a clever classic recursive algorithm exploits the special

structure of the matrix

– the computational cost drops from O(N2) to O(N logN)

• The Quantum Fourier transform (QFT) is a variant of the DFT

– the Fourier matrix Fn is unitary, so it is a quite natural

consider it a quantum operation;

QFT (

N−1�

k=0

xk |k�) =
N−1�

k=0

ck |k�

– however this quantum operation does something different

from the classical Fourier transform because it operates on

the amplitude of the quantum state;

– the QFT gives the amplitudes of the resulting state.

– It is not trivial to implement the QFT!
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