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Solving the Deutsch’s oracle problem I

The answer to the first question is apparent

e two queries are enough to determine what the function does

— there are only two possible alternatives for the input bit

What does it happen using a quantum computer?

Is quite natural to forecast that just one query is required!
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QC: Much Ado About Nothing? I

As a matter of fact, that is a wrong intuition.

e remember that quantum computers don’t really compute with

all values simultaneously

e in the end, a qubit collapses to a single bit of information:

— a single bit of information is not enough to uniquely identify

one out of four functions

e since we need two bits, this problem actually requires two queries

also on a quantum computer!

End of the game?
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A problem more suitable to QC I

Suppose we are interested to know whether the function is

e constant: constant 0 or constant 1 (regardless of the input)
or

e variable: identity or negation

Since there are two categories, a single bit is enough to identify the

answer

e nevertheless, this problem takes two queries on a classical

computer.

e how many on a quantum computer?
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Here, at last, QC advantage.

On a QC a single query is enough to tell whether the function is

constant or variable
e this undeniably outperforms a classical computer

Finally, we are going to leverage the features of the superposition!

Let’s start defining each of the four functions acting on a single bit

on a quantum computer

e first issue: we are using a QC model in which computations must

be reversible
(https://physics.stackexchange.com/questions/704625/quantum-and-classical-

physics-are-reversible-yet-quantum-gates-have-to-be-rever);

e the constant functions are not reversible.
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Making QC operations reversible I

An additional output bit to which the function action is applied

provides what we need

From e now there are two qubits and
|z) it is necessary to rewire the
black box;
Input

e the input qubit is unchanged;

e the value of the function on

the input qubit is written to
Output |0)E f (|z))Output

BB

the output qubit;

e the black box assumes that the
Input |z) |z) Input output input is zero.
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The four one-bit operations I

constant 0O:

Output|0) 10) Output
BB

Input |x) |z) Input

basically this corresponds to a void black box

Output

Input
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Moving to constant 1 we have:
Output|0) 1) Output
BB

Input |z) |z) Input

corresponding to a single negation

Output

Input
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The identity is a bit more complex:
Output|0) lz) Output
BB

Input |z) |z) Input

here the input bit plays the role of control bit;

Output (target) N

{

Input (control)

Where L represents a CNOT gate.
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Once the identity is well understood, the negation becomes simple:

Output|0) |=x) Output
BB

Input |z) |z) Input

again the input bit plays the role of control bit

?I

And the one-query solution to the Deutsch’s oracle problem is...

Output (target)

Input (control)
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A quantum circuit solving the Deutsch’s problem I

Output|0)
H H M—
X -

X = H— M—
Input |0)

where | M |represents a measurement gate.

We are going to show that:
e if the black-box function is constant, the measure returns |11);

e if the black-box function is variable, the measure returns |01).
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The algorithm is the following:

1. initialize qubits to |0);
2. bit flip them: both become |1);
3. apply the Hadamard gate to put them into equal superposition;

4. send them into the black-box.
One of the four circuits we described above is applied.

5. apply again the Hadamard gate;

6. finally measure them.
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Steps two and three correspond to two moves along the unit circle.

if the black box is constant 0, it does nothing.

The post-processing is a single Hadamard gate. We are back to |11).
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If the black box is constant 1, there is an additional negation

Still [11) at the end.
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The first variable function is identity (based on the CNOT gate).

The final result is |01).

Let’s look at the details of step 4 in matrix form.
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so the final state is |01).
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negation requires an additional bit flip after the CNOT

When we finally apply the Hadamard operator we obtain
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=1
0) (starting from f )
7
and
-1
1) (starting from \f ), so the final state is again |01).
V2

It is possible to determine whether the function is constant or

variable by using a single query in a QC setting!
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A layman explanation I

e The difference within the categories (a negation) is neutralized:

e the only difference between constant zero and constant one is a

single negation gate;

e when the negation gate is applied in a superposed state, it does

not really have any effect;

e the effect of the negation gate is neutralized and this, in turn,

neutralizes the difference within the categories.
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The difference between the categories (a CNOT) is magnified:

e the variable functions have a CNOT and the constant functions

do not

Most of the power of QC comes from the chance of changing the
action of various logic gates by leveraging suitable superposition

states.
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What next? '

The solution to the Deutsch’s problem appears, somehow, contrived

and over-killing but...

e it can be easily extended to the case of a n—bit black box

(Deusch-Josza problem);

e on a classic computer the problem requires a number of queries
that is O(2");

e with a quantum computer it can be solved again with a single
query

so it shows the route to an exponential speedup!
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From Deutsch to Shor '

e A further variant is the Simon’s periodicity problem

— again there is a black box and the problem is to figure out
some properties of the function that the black box

implements.

e The famous Shor’s algorithm for integer factorization, is built on

the idea of finding the period of a sequence

— the problem may be formulated in terms of a decision
problem exactly like determining whether the black box has a

particular property or not.
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Integer Factorization I

Given an integer N, find two integers 1 < P, () such that N = P X Q).

N requires n bits to be represented
(N = 4294967296 requires n = 32 bits)

e More difficult when P and () are primes with roughly the same

number of bits.

No algorithm with polynomial-in-n time complexity is known

(but there is no proof that it does not exist!)

The straightforward algorithm that tries all factors from 2 to v N

takes time exponential in n.

The most efficient algorithm has a complexity O(exp (i’/ %n(log n)?))

It is not feasible to factor integer with more than 1000 bits.
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A different viewpoint I

Let’s start with a “guess” 1 < g < N

There are two alternatives:

1. g is a factor of N or it shares a common factor with NV, that is
the g.c.d.(¢g, N) > 1

(we are lucky and the problem is solved!)

2. ¢ is neither a factor of N nor shares a common factor

This is the interesting part...

It is “well known” (Euler) that given A and B (both integers), there
exists a power p and a multiple m (both integers) such that

AP =mx B+1
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For instance, suppose we take 3 and 7:
32=9=1x7+2
3P =21=3x7+6
31=81=11xT7+4
3 =243 =34 x7+5
30 =729=104 x 7+1
So we can write
g =mx N +1

then
g —1=mx N

Assume (1) p is even then

(92 +1) x (9" —1) =mx N

p

(9% +1)x (g5 —1)) mod N =0
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Assume (2) neither (g2 + 1) nor (g2 — 1) is a multiple of N
(see at the bottom for both “assumptions”)
Then we have learned a factor of N. Why?

o N=PxQ

e cither P divides (g2 + 1) and Q divides (g2 — 1) or
the other way around
Q divides (g2 4+ 1) and P divides (g% — 1)

Number theory says that: for any N, if g is relatively prime to N
then, with probability at least %

® p is even;
e neither (g2 4+ 1) nor (g2 — 1) is a multiple of N;

(don’t ask me to demonstrate that!)

60



M. Bernaschi: A gentle introduction to QC

So the problem is finding p.

Consider the modular exponentiation sequence a; = g¥ mod N
obviously a; may assume only the values O, ..., NV — 1.

So there are ¢ and j such that a; = a;

assuming j > i, a; has a period r = j — ¢ that (if it is even)

corresponds to the p we are looking for. Why?
g mod N =1

(because g = 1)
(" —1) mod N =0

So, if we find the period r we can easily solve the integer factorization

problem. Sounds good...
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Unfortunately, finding the period of the sequence g; is not easier
than directly searching for factors of N on a classic computer!

(do you have a clue about the reason?)

But a Quantum Fourier Transform (QFT) allows to find the period

in polynomial time!

62



M. Bernaschi: A gentle introduction to QC

The magic (Q)FT

(an absolutely not rigorous reminder...)

e In general a Fourier transform maps from the time domain to the

frequency domain;

e Fourier transforms map functions of period r to functions which

have non-zero values only at multiples of the frequency 2777;

e the Discrete Fourier Transform (DFT) operates on N equally
spaced samples in the interval |0, 27) and can be implemented as

a (symmetric) matrix-vector product where the Fourier matrix

F,, is defined as
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(1 1 I
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e The DFT of a (sampled) function of period r is a function
concentrated near multiples of %

— if the period r divides N evenly, the result is a function
having non-zero values only at multiples of %

— otherwise there will be non-zero terms at integers close to
multiples of %
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Suppose f(x) =sin(3xx) and N = 9.

Index f DFT
0 0 (0, 0i)
1 0.866 (0,01)
2 -0.866 (0,01)
3 0 (0,-4.51)
4 0.866 (0,01)
5 -0.866 (0,01)
6 0 (0,4.51)
7 0.866 (0,01)
8 -0.866 (0,01)

e¢ When N is a power of 2, the DF'T may be computed in a very
efficient way becoming a Fast Fourier Transform
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— a clever classic recursive algorithm exploits the special

structure of the matrix

— the computational cost drops from O(N?) to O(N log N)

e The Quantum Fourier transform (QFT) is a variant of the DFT

— the Fourier matrix F;, is unitary, so it is a quite natural

consider it a quantum operation;

QFT(E_: zr |k)) = z_: ck | k)
k=0 k=0

— however this quantum operation does something different
from the classical Fourier transform because it operates on
the amplitude of the quantum state;

— the QFT gives the amplitudes of the resulting state.
— It is not trivial to implement the QFT!
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