A gentle introduction to Quantum Computing

Massimo Bernaschi

Istituto per le Applicazioni del Calcolo "Mauro Picone"
Consiglio Nazionale delle Ricerche
Via dei Taurini, 19-00185 Rome - Italy
e-mail: massimo.bernaschi@cnr.it

Giving credit where credit is due

This class is inspired by
Quantum Computing for Computer Scientists
https://youtu.be/F_Riqjdh2oM

Quantum Computing

- is not simply a "much faster" digital computer;
- in some sense, it is not digital at all!
- does not evaluate "all possibile solutions" at the same time;
- can do whatever digital computing does (not more but, hopefully, "faster").

Classic Computing as a special case of QC (1)

Let us start with classic bits represented as vectors.

- Bit 0 is represented by the $\binom{1}{0}$ vector ($|0\rangle$ in Dirac's notation).
- Bit 1 is represented by the $\binom{0}{1}$ vector ($|1\rangle$ in Dirac's notation).

Computing is carried out by multiplying suitable matrices for vectors representing bits.

Classic Computing as a special case of QC (2)

Matrix $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ inverts the second and third row of a vector:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

One-bit operations

Operation	Input	Output
Identity	0	0
	1	1
Negation	0	1
	1	0
Constant 0	0	0
	1	0
Constant 1	0	1
	1	1

All these operations can be carried out using matrices

Identity $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{1}{0}=\binom{1}{0} ;\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{0}{1}=\binom{0}{1}$
Negation $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{0}=\binom{0}{1} ;\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{0}{1}=\binom{1}{0}$
Constant $0\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\binom{1}{0}=\binom{1}{0} ;\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\binom{0}{1}=\binom{1}{0}$
Constant $1\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)\binom{1}{0}=\binom{0}{1} ;\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)\binom{0}{1}=\binom{0}{1}$
The first two operations are reversible: if you know the output and the operation, you can tell what was the input.

Reversible operations

Roughly...

- operations that just shuffle bits around, like permute them, are reversible.
- operations that erase bits and then overwrite them are not reversible.

A specific feature of QC is that it uses operations which are their own inverses

- by applying them twice, you just get back the original input value.

Tensor product

Not a formal definition! (let's say an operational definition...).
For vectors $\binom{x_{0}}{x_{1}}$ and $\binom{y_{0}}{y_{1}}$ is defined as follows

$$
\binom{x_{0}}{x_{1}} \otimes\binom{y_{0}}{y_{1}}=\binom{x_{0}\binom{y_{0}}{y_{1}}}{x_{1}\binom{y_{0}}{y_{1}}}=\left(\begin{array}{l}
x_{0} y_{0} \\
x_{0} y_{1} \\
x_{1} y_{0} \\
x_{1} y_{1}
\end{array}\right)
$$

You may find it also with the name of outer product.

An example with numbers instead of symbols may (hopefully) help:

$$
\binom{1}{2} \otimes\binom{3}{4}=\left(\begin{array}{l}
3 \\
4 \\
6 \\
8
\end{array}\right)
$$

The tensor product is just an extension of the concept of Cartesian product to make it linear!

The extension to three or more vectors is straightforward:

$$
\binom{x_{0}}{x_{1}} \otimes\binom{y_{0}}{y_{1}} \otimes\binom{z_{0}}{z_{1}}=\left(\begin{array}{l}
x_{0} y_{0} z_{0} \\
x_{0} y_{0} z_{1} \\
x_{0} y_{1} z_{0} \\
x_{0} y_{1} z_{1} \\
x_{1} y_{0} z_{0} \\
x_{1} y_{0} z_{1} \\
x_{1} y_{1} z_{0} \\
x_{1} y_{1} z_{1}
\end{array}\right) .
$$

Using classic bits:

$$
\binom{0}{1} \otimes\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \tag{1}\\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

The structure will be the same regardless of the number of vectors:
a single element equal to 1 and all the other elements equal to 0 .

Combinations of classic bits

The combination for two bits are:

$$
\begin{aligned}
& |00\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) ;|01\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) ; \\
& |10\rangle=\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) ;|11\rangle=\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) ;
\end{aligned}
$$

Looking at the four bits combinations: $|00\rangle ;|01\rangle ;|10\rangle ;|11\rangle$ as an ordered sequence $(0,1,2,3)$, the element of the sequence gives the
position of the single 1 element in the tensor product.
In general the representation of n bits is a vector of size 2^{n} called product state.

The CNOT operation

CNOT or conditional not operates on a pair of bits.
One bit plays the role of control bit. The other bit is the target bit.

- if the control bit it is 1 , then the target bit is flipped
- if it is 0 , then the target bit is unchanged

The control bit never changes.

If we have the most significant bit of a 2-bit system as control, and the least significant bit as target, we can use the following matrix
$C=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$ to implement the CNOT operation as follows:
$C|10\rangle=C\left(\binom{0}{1} \otimes\binom{1}{0}\right)=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)=$
$\binom{0}{1} \otimes\binom{0}{1}=|11\rangle ;$

$$
\begin{aligned}
& C|11\rangle=C\left(\binom{0}{1} \otimes\binom{0}{1}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)= \\
& \binom{0}{1} \otimes\binom{1}{0}=|10\rangle ; \\
& C|00\rangle=C\left(\binom{1}{0} \otimes\binom{1}{0}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)= \\
& \binom{1}{0} \otimes\binom{1}{0}=|00\rangle ;
\end{aligned}
$$

$C|01\rangle=C\left(\binom{1}{0} \otimes\binom{0}{1}\right)=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)=$
$\binom{1}{0} \otimes\binom{0}{1}=|01\rangle ;$
Classical computers are all built on the NAND gate.
CNOT is the analogous NAND for reversible computing.
It is used to build up larger and more complicated logical statements.
Actually, it is not possible to build every logical function with the CNOT gate.

It is necessary to use a Toffoli gate that has two control bits.

Qubits and QC

The classic bits are nothing else than a special case of qubits.
The general qubit is represented by a vector $\binom{\alpha}{\beta}$ of two elements α and β with α and β complex numbers such that $\|\alpha\|^{2}+\|\beta\|^{2}=1$.
For the sake of simplicity, we consider only real numbers (\mathbb{R}).

$$
\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}},\binom{\frac{1}{2}}{\frac{\sqrt{3}}{2}},\binom{-1}{0},\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} \text { are examples of qubits. }
$$

A (\mathbb{R}) valued qubit can be represented as a point on an unitary circle. In general a qubit is represented on the Bloch's sphere.

Quantum vs. Classic probabilities (1)

- The fact that α and β may assume negative values plays an important role in the tricky inner workings of QC;
- a qubit has a value which is actually both zero and one at the same time
- this is the property called superposition in a qualitative description of QC.
- Very roughly, since the qubit is in superposition we "compute" with the values of both zero and one at the same time;
- this does not mean we compute more than one solution at the same time!
- These two statements sounds contradictory but they are both true in the Quantum realm!

Quantum vs. Classic probabilities (2)

The crucial point is: when we measure a qubit, it collapses to the familiar values of either zero or one with some probability

- The probability of $\binom{\alpha}{\beta}$ to collapse to 0 is $\|\alpha\|^{2}$
the probability to collapse to 1 is $\|\beta\|^{2}$
The measure is carried out at the end of a quantum computation to get the final result.

For instance $\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$ has a $\|1 / \sqrt{2}\|^{2}=\frac{1}{2}$ chance of collapsing to 0 , and $\frac{1}{2}$ chance of collapsing into one. It's like a coin-flip.

- A classical qubit, $\binom{1}{0}$ has a 100% chance of collapsing to zero
- $\binom{0}{1}$ has a 100% chance of collapsing into one

Multiple qubits

Multiple qubits are also represented by the tensor product.
For instance: $\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \otimes\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=\left(\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}\end{array}\right)$ so there is a $\frac{1}{4}$ chance each of
collapsing to $|00\rangle,|01\rangle,|10\rangle,|11\rangle$.

Operations on qubits

Also for qubits operations are carried out by using matrices.
For instance (applying negation):
The qubit $\binom{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$ has a 25% chance of collapsing to 0 and 75%
chance of collapsing collapse into 1 .
If we apply the bit flip operator $\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)\binom{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\binom{\frac{\sqrt{3}}{2}}{\frac{1}{2}}$
now there is a 75% chance of collapsing into 0 and 25% chance of collapsing into 1 .

Quantum circuits

QC can be defined as "the art of manipulating those probabilities" (actually called amplitudes in the quantum jargon), with quantum gates (each one corresponding to a suitable matrix).

- a combination of quantum gates defines a quantum circuit;
- the qubits must be manipulated with a gentle touch...
- not enough to collapse them
- enough to change their state.
this is one of the reasons why QC is still in its infancy!

The Hadamard gate (1)

The Hadamard gate corresponds to the $\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)$ matrix.
It takes a 0 or 1 qubit, and transforms it in the coin-flip state where it is in exactly equal superposition
$H|0\rangle=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)\binom{1}{0}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} ; H|1\rangle=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)\binom{0}{1}=\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}$
Note the - (minus sign) in the lower right corner of the Hadamard matrix. Can you tell the reason of having a - there?

The Hadamard gate (2)

The Hadamard gate puts the qubit in superposition.
Both $\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$ and $\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}$ have the same probabilities from the classic viewpoint but they correspond to two distinct quantum states.

- The Hadamard gate may be used also to take out of superposition into the classical bits.
- If we apply the Hadamard gate to the coin-flip state, we obtain

$$
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=\binom{1}{0} ;\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}=\binom{0}{1}
$$

```
A first insight to the "logic" of QC
```

1. start with classical bit values;
2. put them into superposition;
3. carry out quantum transformations;
4. at the end, if we are clever, it is possible to move them back to zero or one so that there is a "high" chance of getting a "right" answer.

In general a QC algorithm is not deterministic!

- the famous Shor's algorithm for factoring large numbers only gives the right answer 50% of the times.

A Quantum Finite State Machine

A Finite State Machine (FSM) represents a system that can, at any point in time, be in a specific state from a finite set of possible states.

$$
\begin{aligned}
& \binom{-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \\
& \binom{0}{1} \\
& \binom{-1}{0} \\
& \left.\left.\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right)\right\rangle \\
& \left(\begin{array}{l}
1 \\
-\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right)
\end{aligned}\binom{0}{0} \xrightarrow[{\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}} /]{ }
$$

If we apply the Negation (bit flip) operator, we change the state (i.e., position along the unit circle)

Negation

For the Hadamard operator
Hadamard

FSM as an alternative to matrix-vector products

For instance, we can draw a quantum circuit

$$
\binom{1}{0}-\mathrm{X}-\mathrm{H}-\mathrm{X}-\mathrm{H}-\mathrm{X}-\binom{?}{?}
$$

where X is a Negation gate and H is a Hadamard gate.
What is $\binom{?}{?}$ at the end of the computation?

The result of applying the circuit to $\binom{1}{0}$ is $\binom{-1}{0}$
note that the computation is reversible.

The Deutsch's oracle problem

Problem is

- there is a black-box (i.e., a device that can not be inspected) that takes in input one bit and returns one bit;
- it is possible to use the device, giving in input one bit and looking at the output bit;

1. how many queries would it take to determine the function on a classic computer?
2. how many on a quantum computer?
