Kite attack: reshaping the cube attack for a flexible GPU-based maxterm search

Dinur and Shamir's cube attack has attracted significant attention in the literature. Nevertheless, the lack of implementations achieving effective results casts doubts on its practical relevance. On the theoretical side, promising results have been recently achieved leveraging on division trails. The present paper follows a more practical approach and aims at giving new impetus to this line of research by means of a cipher-independent flexible framework that is able to carry out the cube attack on GPU/CPU clusters.

Functional inequalities for marked point processes

In recent years, a number of functional inequalities have been derived for Poisson random measures, with a wide range of applications. In this paper, we prove that such inequalities can be extended to the setting of marked temporal point processes, under mild assumptions on their Papangelou conditional intensity. First, we derive a Poincare inequality. Second, we prove two transportation cost inequalities. The first one refers to functionals of marked point processes with a Papangelou conditional intensity and is new even in the setting of Poisson random measures.

On the impact of controlled wall roughness shape on the flow of a soft material

We explore the impact of geometrical corrugations on the near-wall flow properties of a soft material driven in a confined rough microchannel. By means of numerical simulations, we perform a quantitative analysis of the relation between the flow rate ? and the wall stress ?w for a number of setups, by changing both the roughness values as well as the roughness shape. Roughness suppresses the flow, with the existence of a characteristic value of ?w at which flow sets in. Just above the onset of flow, we quantitatively analyze the relation between ? and ?w.

Multisensor monitoring of monuments: measurement of vibration frequencies

This paper presents the results of an experiment aiming to measure the vibrational frequencies of the main structures of the medieval church of San Domenico (Matera, southern Italy) and relate them to the mechanical properties of geological stratigraphy and construction materials. Vibrational frequencies are measured by means of the ground-based radar inteferometry technique using a Ku-band radar. Time series of ground-based radar data are processed to measure displacements and vibration frequencies of the church structures.

On Carriers Collaboration in Hub Location Problems

This paper considers a hub location problem where several carriers operate on a shared network to satisfy a given demand represented by a set of commodities. Possible cooperative strategies are studied where carriers can share resources or swap their respective commodities to produce tangible cost savings while fully satisfying the existing demand. Three different collaborative policies are introduced and discussed, and mixed integer programming formulations are provided for each of them.

Modelling drug release from composite capsules and nanoparticles

We present a general mechanistic model of mass diffusion for a composite sphere placed in a large ambient medium. The multi-layer problem is described by a system of diffusion equations coupled via interlayer boundary conditions such as those imposing a finite mass resistance at the external surface of the sphere. While the work is applicable to the generic problem of heat or mass transfer in a multi-layer sphere, the analysis and results are presented in the context of drug kinetics for desorbing and absorbing spherical microcapsules.

The physics of open systems for the simulation of complex molecular environments in soft matter

Molecular dynamics (MD) has become one of the most powerful tools of investigation in soft matter. Despite such success, simulations of large molecular environments are mostly run using the approximation of closed systems without the possibility of exchange of matter. Due to the molecular complexity of soft matter systems, an optimal simulation strategy would require the application of concurrent multiscale resolution approaches such that each part of a large system can be considered as an open subsystem at a high resolution embedded in a large coarser reservoir of energy and particles.