Forensic analysis of Microsoft Skype for Business

We present three case studies to illustrate a methodology for conducting forensics investigation on Microsoft Skype for Business. The proposed methodology helps to retrieve information on chat and audio communications made by any account who accessed the PC, to retrieve IP addresses and communication routes for all the participants of a call, and to retrieve forensics evidence to identify the end-user devices of a VoIP call by analyzing the CODECs exchanged by the clients during the SIP (Session Initiation Protocol) handshaking phase.

On the impact of controlled wall roughness shape on the flow of a soft material

We explore the impact of geometrical corrugations on the near-wall flow properties of a soft material driven in a confined rough microchannel. By means of numerical simulations, we perform a quantitative analysis of the relation between the flow rate ? and the wall stress ?w for a number of setups, by changing both the roughness values as well as the roughness shape. Roughness suppresses the flow, with the existence of a characteristic value of ?w at which flow sets in. Just above the onset of flow, we quantitatively analyze the relation between ? and ?w.

Dynamic symmetry-breaking in mutually annihilating fluids with selective interfaces

The selective entrapment of mutually annihilating species within a phase-changing carrier fluid is explored by both analytical and numerical means. The model takes full account of the dynamic heterogeneity which arises as a result of the coupling between hydrodynamic transport, dynamic phase-transitions and chemical reactions between the participating species, in the presence of a selective droplet interface. Special attention is paid to the dynamic symmetry breaking between the mass of the two species entrapped within the expanding droplet as a function of time.

Exploiting multi-level parallelism for stitching very large microscopy images

Due to the limited field of view of the microscopes, acquisitions of macroscopic specimens require many parallel image stacks to cover the whole volume of interest. Overlapping regions are introduced among stacks in order to make it possible automatic alignment by means of a 3D stitching tool. Since state-of-the-art microscopes coupled with chemical clearing procedures can generate 3D images whose size exceeds the Terabyte, parallelization is required to keep stitching time within acceptable limits.

The phenotypic variations of multi-locus imprinting disturbances associated with maternal-effect variants of NLRP5 range from overt imprinting disorder to apparently healthy phenotype

Background A subset of individuals affected by imprinting disorders displays multi-locus imprinting disturbances (MLID). MLID has been associated with maternal-effect variants that alter the maintenance of methylation at germline-derived differentially methylated regions (gDMRs) in early embryogenesis. Pedigrees of individuals with MLID also include siblings with healthy phenotype.

A dominance test for measuring financial connectedness

This paper introduces a dominance test that allows to determine whether or not a financial institution can be classified as being more systemically important than another in a multivariate framework. The dominance test relies on a new risk measure, the NetCoVaR that is specifically tailored to capture the joint extreme co-movements between institutions belonging to a network. The asymptotic theory for the statistical test is provided under mild regularity conditions concerning the joint distribution of asset returns which is assumed to be elliptically contoured.

Fixation probabilities in weakly compressible fluid flows

Competition between biological species in marine environments is affected by the motion of the surrounding fluid. An effective 2D compressibility can arise, for example, from the convergence and divergence of water masses at the depth at which passively traveling photosynthetic organisms are restricted to live. In this report, we seek to quantitatively study genetics under flow. To this end, we couple an off-lattice agent-based simulation of two populations in 1D to a weakly compressible velocity field--first a sine wave and then a shell model of turbulence.