Abstract
The identification of the basic mechanisms responsible for cardiovascular diseases stands as one of the most challenging problems in modern medical research including various mechanisms which encompass a broad spectrum of space and time scales. Major implications for clinical practice and pre-emptive medicine rely on the onset and development of intraluminal thrombus in which effective clinical therapies require synthetic risk predictors/indicators capable of informing real-time decision-making protocols. In the present contribution, two novel hemodynamics synthetic indicators, based on a three-band decomposition (TBD) of the shear stress signal, are introduced. Extensive fluid-structure computer simulations of patient-specific scenarios confirm the enhanced risk-prediction capabilities of the TBD indicators. In particular, they permit a quantitative and accurate localization of the most likely thrombus deposition in realistic aortic geometries, where previous indicators would predict healthy operation. The proposed methodology is also shown to provide additional information and discrimination criteria on other factors of major clinical relevance, such as the size of the aneurysm. Copyright (C) EPLA, 2015
Anno
2015
Tipo pubblicazione
Altri Autori
Nestola, M. G. C.; Gizzi, A.; Cherubini, C.; Filippi, S.; Succi, S.
Editore
EDP sciences
Rivista
Europhysics letters (Print)