Macroscopic chaos in globally coupled maps

We study the coherent dynamics of globally coupled maps showing macroscopic chaos. With this term we indicate the hydrodynamical-like irregular behavior of some global observables, with typical times much longer than the times related to the evolution of the single (or microscopic) elements of the system. The usual Lyapunov exponent is not able to capture the essential features of this macroscopic phenomenon. Using the recently introduced notion of finite size Lyapunov exponent, we characterize, in a consistent way, these macroscopic behaviors.

Strong convergence of a vector-BGK model to the incompressible Navier-Stokes equations via the relative entropy method

The aim of this paper is to prove the strong convergence of the solutions to a vector-BGK model under the diffusive scaling to the incompressible Navier-Stokes equations on the two-dimensional torus. This result holds in any interval of time [0,T], with T>0. We also provide the global in time uniform boundedness of the solutions to the approximating system. Our argument is based on the use of local in time H-estimates for the model, established in a previous work, combined with the L-relative entropy estimate and the interpolation properties of the Sobolev spaces.

UNIFORM ASYMPTOTIC AND CONVERGENCE ESTIMATES FOR THE JIN XIN MODEL UNDER THE DIFFUSION SCALING

We obtain sharp decay estimates in time in the context of Sobolev spaces for smooth solutions to the one-dimensional Jin Xin model under the diffusion scaling, which are uniform with respect to the singular parameter of the scaling. This provides the convergence to the limit nonlinear parabolic equation both for large time and for the vanishing singular parameter. The analysis is performed by means of two main ingredients.

Exit-times and epsilon-entropy for dynamical systems, stochastic processes, and turbulence

We present an investigation of epsilon -entropy, h(epsilon), in dynamical systems, stochastic processes and turbulence, This tool allows for a suitable characterization of dynamical behaviours arising in systems with many different scales of motion. Particular emphasis is put on a recently proposed approach to the calculation of the epsilon -entropy based on the exit-time statistics. The advantages of this method are demonstrated in examples of deterministic diffusive maps, intermittent maps, stochastic self- and multi-affine signals and experimental turbulent data.

Nonresonant bilinear forms for partially dissipative hyperbolic systems violating the Shizuta-Kawashima condition

We consider a simple example of a partially dissipative hyperbolic system violating the Shizuta-Kawashima condition, ie such that some eigendirections do not exhibit dissipation at all. In the space-time resonances framework introduced by Germain, Masmoudi and Shatah, we prove that, when the source term has a Nonresonant Bilinear Form, as proposed by Pusateri and Shatah CPAM 2013, the formation of singularities is prevented, despite the lack of dissipation. This allows us to show that smooth solutions to this preliminary case-study model exist globally in time.

Revisitation of a Tartar's result on a semilinear hyperbolic system with null condition

We revisit a method introduced by Tartar for proving global well-posedness of a semilinear hyperbolic system with null quadratic source in one space dimension. A remarkable point is that, since no dispersion effect is available for 1D hyperbolic systems, Tartar's approach is entirely based on spatial localization and finite speed of propagation.