Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: Scientific basis and initial evaluation

We introduce a classification method (cumulative discriminant analysis) of the discriminant analysis type to discriminate between cloudy and clear-sky satellite observations in the thermal infrared. The tool is intended for the high-spectral-resolution infrared sounder (IRS) planned for the geostationary METEOSAT (Meteorological Satellite) Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer) data as a proxy.

Diurnal variation in Sahara desert sand emissivity during the dry season from IASI observations

The problem of diurnal variation in surface emissivity over the Sahara Desert during non-raining days is studied and assessed with observations from the Infrared Atmospheric Sounding Interferometer (IASI). The analysis has been performed over a Sahara Desert dune target area during July 2010. Spinning Enhanced Visible and Infrared Imager observations from the European geostationary platform Meteosat-9 (Meteorological Satellite 9) have been also used to characterize the target area.

Computational approaches for isoform detection and estimation: good and bad news

Background: The main goal of the whole transcriptome analysis is to correctly identify all expressed transcripts within a specific cell/tissue- at a particular stage and condition - to determine their structures and to measure their abundances. RNA-seq data promise to allow identification and quantification of transcriptome at unprecedented level of resolution, accuracy and low cost. Several computational methods have been proposed to achieve such purposes.

Fundamental diagrams for kinetic equations of traffic flow

In this paper we investigate the ability of some recently introduced discrete kinetic models of vehicular traffic to catch, in their large time behavior, typical features of theoretical fundamental diagrams. Specifically, we address the so-called "spatially homogeneous problem" and, in the representative case of an exploratory model, we study the qualitative properties of its solutions for a generic number of discrete microscopic states. This includes, in particular, asymptotic trends and equilibria, whence fundamental diagrams originate.

Differentiated cell behavior: a multiscale approach using measure theory

This paper deals with the derivation of a collective model of cell populations out of an individual-based description of the underlying physical particle system. By looking at the spatial distribution of cells in terms of time-evolving measures, rather than at individual cell paths, we obtain an ensemble representation stemming from the phenomenological behavior of the single component cells. In particular, as a key advantage of our approach, the scale of representation of the system, i.e., microscopic/discrete vs.

A fully-discrete-state kinetic theory approach to traffic flow on road networks

This paper presents a new approach to the modeling of vehicular traffic flows on road networks based on kinetic equations. While in the literature the problem has been extensively studied by means of macroscopic hydrodynamic models, to date there are still not, to the authors' knowledge, contributions tackling it from a genuine statistical mechanics point of view. Probably one of the reasons is the higher technical complexity of kinetic traffic models, further increased in case of several interconnected roads.