SEMINARI GENERALI IAC 2024

cover2024

Riparte il ciclo di seminari dell'IAC dedicati alle attività di ricerca in matematica applicata.

I seminari generali sono l'occasione per ricercatori dell'istituto (e non) di presentare le loro ricerche a un pubblico più vasto di quello del proprio settore di riferimento nella matematica applicata. Il linguaggio scelto, non strettamente tecnico, ha infatti lo scopo di stimolare collaborazioni interdisciplinari.

Tutti i seminari sono trasmessi in streaming sul canale Youtube dell'istituto @CNRIAC.

I seminari si tengono sempre alle ore 14:30

DI SEGUITO IL CALENDARIO DEI SEMINARI IN PROGRAMMA:

 

19 marzo - Matteo Paoluzzi, Ricercatore IAC-CNR (sede di Napoli) 

Luogo: aula al primo piano della sede di Roma, via dei Taurini 19

Titolo: Collective Behavior in Living Materials 

Active Materials are collections of self-propelled particles that serve as model systems for several biological systems ranging from epithelial tissues to bacterial microfilms. Because of their non-equilibrium dynamics, active systems can show condensed phases that are prevented by fluctuations at equilibrium. For instance, active particles can condense even in the absence of any attractive force, develop collective long-ranged polar order in two spatial dimensions, and produce spontaneous currents once embedded into complex environments. In this talk, I will show how most of the peculiarities of scalar active systems can be rationalized in terms of persistent random walks. I will explore the impact of such non-equilibrium dynamics on a coarse-graining scale where it is possible to observe a phase separation driven by the noise.

Link streaming QUI: https://www.iac.cnr.it/matteo-paoluzzi-i-seminari-generali-delliac-2024

 

16 aprile - Fabio Difonzo, Ricercatore IAC-CNR (sede di Bari)

Il seminario si svolge martedì 16 aprile, presso la sede CNR-IAC di Bari, in modalità mista, presenza e streaming (vedi link in calce). 

Il titolo del seminario è: Physics informed Neural Networks for inverse problems in peridynamics and porous media.

Di seguito l'abstract.

Deep learning is a powerful tool for solving data driven differential problems and has come out to have successful applications in solving direct and inverse problems described by PDEs. When the physics, modeled by a PDE, is fed into a neural network architecture, it gives rise to the so-called Physics Informed Neural Networks (PINNs). In this talk, I will apply PINNs to inverse problems in peridynamic theory, mobile-immobile and generalized multi-rate transfer models and optimal control problems in the framework of Richards’ equation. In particular, I will show results about PINNs, applied to inverse problems in standard diffusion equations, based on Radial Basis Function activated layers; adaptive PINNs for multi-scale models in fluid dynamics; and PINNs used to predict control on moisture content in 2D problems described by Richards’ equation in unsaturated soils.

Link streaming QUI : https://www.youtube.com/watch?v=TCZtQCsRZy0

 

23 aprile - Martino Fortuna, Assegnista IAC-CNR (sede di Roma)

4 giugno - Luca Senni, Ricercatore IAC-CNR (sede di Roma)

 

 

 

Data inizio
Data fine