Nonlinear inviscid damping and shear-buoyancy instability in the two-dimensional Boussinesq equations

We investigate the long-time properties of the two-dimensional inviscid Boussinesq equations near a stably stratified Couette flow, for an initial Gevrey perturbation of size ?. Under the classical Miles-Howard stability condition on the Richardson number, we prove that the system experiences a shear-buoyancy instability: the density variation and velocity undergo an O(t-1/2) inviscid damping while the vorticity and density gradient grow as O(t1/2). The result holds at least until the natural, nonlinear timescale t??-2.

Strong ill-posedness in W1,? of the 2d stably stratified Boussinesq equations and application to the 3d axisymmetric Euler Equations.

We prove the strong ill-posedness of the two-dimensional Boussinesq system in vorticity form in L8pR2q without boundary, building upon the method that Shikh Khalil & Elgindi arXiv:2207.04556v1 developed for scalar equations. We provide examples of initial data with vorticity and density gradient of small L8pR2q size, for which the horizontal density gradient has a strong L8pR2q-norm inflation in infinitesimal time, while the vorticity and the vertical density gradient remain bounded.

Controlling release from encapsulated drug-loaded devices: insights from modeling the dissolution front propagation

Dissolution of drug from its solid form to a dissolved form is an important consideration in the design and optimization of drug delivery devices, particularly owing to the abundance of emerging compounds that are extremely poorly soluble. When the solid dosage form is encapsulated, for example by the porous walls of an implant, the impact of the encapsulant drug transport properties is a further confounding issue. In such a case, dissolution and diffusion work in tandem to control the release of drug.

The adaptive Lasso estimator of AR(p) time series with applications to INAR(p) and Hawkes processes

We study the consistency and the oracle properties of the adaptive Lasso estimator for the coefficients of a linear AR(p) time series with a strictly stationary white noise (not necessarily described by i.i.d. r.v.'s). We apply the results to INAR(p) time series and to the non-parametric inference of the fertility function of a Hawkes point process. We present some numerical simulations to emphasize the advantages of the proposed procedure with respect to more classical ones and finally we apply it to a set of epidemiological data

Simultaneous non-parametric regression in RADWT dictionaries

A new technique for nonparametric regression of multichannel signals is presented. The technique is based on the use of the Rational-Dilation Wavelet Transform (RADWT), equipped with a tunable Q-factor able to provide sparse representations of functions with different oscillations persistence. In particular, two different frames are obtained by two RADWT with different Q-factors that give sparse representations of functions with low and high resonance.

A generalized mean-field game model for the dynamics of pedestrians with limited predictive abilities

This paper investigates the model for pedestrian flow firstly proposed in [Cristiani, Priuli, and Tosin, SIAM J. Appl. Math., 75:605-629, 2015]. The model assumes that each individual in the crowd moves in a known domain, aiming at minimizing a given cost functional. Both the pedestrian dynamics and the cost functional itself depend on the position of the whole crowd. In addition, pedestrians are assumed to have predictive abilities, but limited in time.

Using frames in statistical signal recovering

Overcomplete representations such as wavelets and windowed Fourier expansions have become mainstays of modern statistical data analysis. Here we derive expressions for the mean quadratic risk of shrinkage estimators in the context of general finite frames, which include any fullrank linear expansion of vector data in a finite-dimensional setting. We provide several new results and practical estimation procedures that take into account the geometric correlation structure of frame elements.

A new frame based de-noising procedure for fast oscillating signals

In recent years there has been a growing interest in frame based de-noising procedures. The advantage of frames with respect to classical orthonor- mal bases (e.g. wavelet, Fourier, polynomial) is that they can furnish an efficient representation of a more broad class of signals. For example, signals which have fast oscillating behavior as sonar, radar, EEG, stock market, audio and speech are much more well represented by a frame (with similar oscillating characteristic) than by a classical wavelet basis, although the frame representation for such kind of signals can be not properly sparse.