Nonlinear inviscid damping and shear-buoyancy instability in the two-dimensional Boussinesq equations
We investigate the long-time properties of the two-dimensional inviscid Boussinesq equations near a stably stratified Couette flow, for an initial Gevrey perturbation of size ?. Under the classical Miles-Howard stability condition on the Richardson number, we prove that the system experiences a shear-buoyancy instability: the density variation and velocity undergo an O(t-1/2) inviscid damping while the vorticity and density gradient grow as O(t1/2). The result holds at least until the natural, nonlinear timescale t??-2.