Controlling release from encapsulated drug-loaded devices: insights from modeling the dissolution front propagation

Dissolution of drug from its solid form to a dissolved form is an important consideration in the design and optimization of drug delivery devices, particularly owing to the abundance of emerging compounds that are extremely poorly soluble. When the solid dosage form is encapsulated, for example by the porous walls of an implant, the impact of the encapsulant drug transport properties is a further confounding issue. In such a case, dissolution and diffusion work in tandem to control the release of drug.

A Fast Retrieval Model for Synergistic Inversion of Nadir / Zenith Spectral Radiance Measurements

Starting from 2019, the Italian Space Agency (ASI) is supporting dedicated projects for the development of new methods, tools and competences for the interpretation and the exploitation of the future measurements of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) experiment. FORUM will be the ninth Earth Explorer mission of the European Space Agency, scheduled for launch on a polar orbiting satellite in 2027.

Efficient GPU parallelization of adaptive mesh refinement technique for high-order compressible solver with immersed boundary

A new, highly parallelized, adaptive mesh refinement (AMR) library, equipped with an accurate immersed boundary (IB) method for solving the compressible Navier-Stokes system is presented. The library, named ADAM, is designed to efficiently exploit modern exascale GPU-accelerated supercomputers and it is implemented with a highly modular structure in order to make easy to leverage it for a wide range of CFD applications.

Penalized wavelet nonparametric univariate logistic regression for irregular spaced data

This paper concerns the study of a non-smooth logistic regression function. The focus is on a high-dimensional binary response case by penalizing the decomposition of the unknown logit regression function on a wavelet basis of functions evaluated on the sampling design. Sample sizes are arbitrary (not necessarily dyadic) and we consider general designs. We study separable wavelet estimators, exploiting sparsity of wavelet decompositions for signals belonging to homogeneous Besov spaces, and using efficient iterative proximal gradient descent algorithms.

Comparison of the IASI water deficit index and other vegetation indices: the case study of the intense 2022 drought over the Po Valley

Exploiting the Infrared Atmospheric Sounder Interferometer (IASI) profiling capability for surface parameters, atmospheric temperature, and water vapour we have designed a new Water Deficit Index (wdi) to monitor drought and heatwaves. Because of climate change at a global level, drought is becoming a strong emergency also in countries which never experienced it, such as the Mediterranean mid-latitude area and, in particular, Italy. The last two years strongly affected the northern part of Italy, i.e. the Po Valley, causing high vegetation and soil water stress.

Highly automated dipole estimation (HADES)

Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation.

Simultaneous non-parametric regression in RADWT dictionaries

A new technique for nonparametric regression of multichannel signals is presented. The technique is based on the use of the Rational-Dilation Wavelet Transform (RADWT), equipped with a tunable Q-factor able to provide sparse representations of functions with different oscillations persistence. In particular, two different frames are obtained by two RADWT with different Q-factors that give sparse representations of functions with low and high resonance.

Non-invasive investigation of three paintings attributed to Cavalier d'Arpino by means of ED-XRF, FORS and Multispectral Imaging

The aim of this work was to characterize the palette and painting technique used for the realization of three late sixteenth century paintings from "Galleria dell'Accademia Nazionale di San Luca" in Rome attributed to Cavalier d'Arpino (Giuseppe Cesari), namely "Cattura di Cristo" (Inv. 158), "Autoritratto" (Inv. 546) and "Perseo e Andromeda" (Inv. 221).