Adapting functional genomic tools to metagenomic analyses: investigating the role of gut bacteria in relation to obesity

With the expanding availability of sequencing technologies, research previously centered on the human genome can now afford to include the study of humans' internal ecosystem (human microbiome). Given the scale of the data involved in this metagenomic research (two orders of magnitude larger than the human genome) and their importance in relation to human health, it is crucial to guarantee (along with the appropriate data collection and taxonomy) proper tools for data analysis.

A comprehensive molecular interaction map for rheumatoid arthritis

Background: Computational biology contributes to a variety of areas related to life sciences and, due to the growing impact of translational medicine - the scientific approach to medicine in tight relation with basic science, it is becoming an important player in clinical-related areas. In this study, we use computation methods in order to improve our understanding of the complex interactions that occur between molecules related to Rheumatoid Arthritis (RA).

MANIA: A Gene Network Reverse Algorithm for Compounds Mode-of-Action and Genes Interactions Inference

Understanding the complexity of the cellular machinery represents a grand challenge in molecular biology. To contribute to the deconvolution of this complexity, a novel inference algorithm based on linear ordinary differential equations is proposed, based on high-throughput gene expression data. The algorithm can infer (i) gene-gene interactions from steady state expression profiles AND (ii) mode-of-action of the components that can trigger changes in the system.

Extracting weights from edge directions to find communities in directed networks

Community structures are found to exist ubiquitously in real-world complex networks. We address here the problem of community detection in directed networks. Most of the previous literature ignores edge directions and applies methods designed for community detection in undirected networks, which discards valuable information and often fails when different communities are defined on the basis of incoming and outgoing edges. We suggest extracting information about edge directions using a PageRank random walk and translating such information into edge weights.

TOM: a web-based integrated approach for identification of candidate disease genes

The massive production of biological data by means of highly parallel devices like microarrays for gene expression has paved the way to new possible approaches in molecular genetics. Among them the possibility of inferring biological answers by querying large amounts of expression data. Based on this principle, we present here TOM, a web-based resource for the efficient extraction of candidate genes for hereditary diseases. The service requires the previous knowledge of at least another gene responsible for the disease and the linkage area, or else of two disease associated genetic intervals.

Identification of noninvasive imaging surrogates for brain tumor gene-expression modules

Glioblastoma multiforme (GBM) is,the most common and lethal primary brain tumor in adults. We combined neuroimaging and DNA microarray analysis to create a multidimensional map of gene-expression patterns in GBM that provided clinically relevant insights into tumor biology. Tumor contrast enhancement and mass effect predicted activation of specific hypoxia and proliferation gene-expression programs, respectively.

Mining Gene Sets for Measuring Similarities

In recent years, the development of high throughput devices for the massive parallel analyses of genomic data has lead to the generation of large amount of new biological evidences and has triggered the proliferation of data mining algorithms for the extraction of meaningful information. Microarrays for gene expression analyses are part of this revolution and provide important insight in molecular biology often in the form of coherent sets of genes representing previously uncharacterized processes.

Discovering coherent biclusters from gene expression data using zero-suppressed binary decision diagrams

The biclustering method can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse in gene expression measurement. This is because the biclustering approach, in contrast to the conventional clustering techniques, focuses on finding a subset of the genes and a subset of the experimental conditions that together exhibit coherent behavior. However, the biclustering problem is inherently intractable, and it is often computationally costly to find biclusters with high levels of coherence.