Partitioning networks into communities by message passing

Community structures are found to exist ubiquitously in a number of systems conveniently represented as complex networks. Partitioning networks into communities is thus important and crucial to both capture and simplify these systems' complexity. The prevalent and standard approach to meet this goal is related to the maximization of a quality function, modularity, which measures the goodness of a partition of a network into communities. However, it has recently been found that modularity maximization suffers from a resolution limit, which prevents its effectiveness and range of applications.

Joint analysis of transcriptional and post-transcriptional brain tumor data: searching for emergent properties of cellular systems

Background: Advances in biotechnology offer a fast growing variety of high-throughput data for screening molecular activities of genomic, transcriptional, post-transcriptional and translational observations. However, to date, most computational and algorithmic efforts have been directed at mining data from each of these molecular levels (genomic, transcriptional, etc.) separately. In view of the rapid advances in technology (new generation sequencing, high-throughput proteomics) it is important to address the problem of analyzing these data as a whole, i.e.

Enhanced modularity-based community detection by random walk network preprocessing

The representation of real systems with network models is becoming increasingly common and critical to both capture and simplify systems' complexity, notably, via the partitioning of networks into communities. In this respect, the definition of modularity, a common and broadly used quality measure for networks partitioning, has induced a surge of efficient modularity-based community detection algorithms. However, recently, the optimization of modularity has been found to show a resolution limit, which reduces its effectiveness and range of applications.

LEARNING OVERLAPPING COMMUNITIES IN COMPLEX NETWORKS VIA NON-NEGATIVE MATRIX FACTORIZATION

Community structure is an important topological phenomenon typical of complex networks. Accurately unveiling communities is thus crucial to understand and capture the many-faceted nature of complex networks. Communities in real world frequently overlap, i.e. nodes can belong to more than one community. Therefore, quantitatively evaluating the extent to which a node belongs to a community is a key step to find overlapping boundaries between communities. Non-negative matrix factorization (NMF) is a technique that has been used to detect overlapping communities.

Discovering coherent biclusters from gene expression data using zero-suppressed binary decision diagrams

The biclustering method can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse in gene expression measurement. This is because the biclustering approach, in contrast to the conventional clustering techniques, focuses on finding a subset of the genes and a subset of the experimental conditions that together exhibit coherent behavior. However, the biclustering problem is inherently intractable, and it is often computationally costly to find biclusters with high levels of coherence.

Enhanced pClustering and its applications to gene expression data

Clustering has been one of the most popular methods to discover useful biological insights from DNA microarray. An interesting paradigm is simultaneous clustering of both genes and experiments. This "biclustering "paradigm aims at discovering clusters that consist of a subset of the genes showing a coherent expression pattern over a subset of conditions. The pClustering approach is a technique that belongs to this paradigm. Despite many theoretical advantages, this technique has been rarely applied to actual gene expression data analysis.