The knapsack problem with forfeits

In this paper we introduce and study the Knapsack Problem with Forfeits. With respect to the classical definition of the problem, we are given a collection of pairs of items, such that the inclusion of both in the solution involves a reduction of the profit. We propose a mathematical formulation and two heuristic algorithms for the problem. Computational results validate the effectiveness of our approaches.

Asymptotic analysis of Poisson shot noise processes, and applications

Poisson shot noise processes are natural generalizations of compound Poisson processes that have been widely applied in insurance, neuroscience, seismology, computer science and epidemiology. In this paper we study sharp deviations, fluctuations and the stable probability approximation of Poisson shot noise processes. Our achievements extend, improve and complement existing results in the literature. We apply the theoretical results to Poisson cluster point processes, including generalized linear Hawkes processes, and risk processes with delayed claims. Many examples are discussed in detail.

Numerical simulation of a multi-group age-of-infection model

Age of infection epidemic models [1, 3], based on non-linear integro-dierential equations, naturally describe the evolution of diseases whose infectivity depends on the time since becoming infected. Here we consider a multi-group age of infection model [2] and we extend the investigations in [4], [5] and [6] to provide numerical solutions that retain the main properties of the continuous system. In particular, we use Direct Quadrature methods and prove that the numerical solution is positive and bounded.

Lagrange-Chebyshev Interpolation for image resizing

Image resizing is a basic tool in image processing, and in literature, we have many methods based on different approaches, which are often specialized in only upscaling or downscaling. In this paper, independently of the (reduced or enlarged) size we aim to get, we approach the problem at a continuous scale where the underlying function representing the image is globally approximated by its Lagrange-Chebyshev I kind interpolation polynomial corresponding to suitable (tensor product) grids of first kind Chebyshev zeros.

The 0-fractional perimeter between fractional perimeters and Riesz potentials

This paper provides a unified point of view on fractional perimeters and Riesz potentials. Denoting byH? - for ? 2 .0; 1/ - the ?-fractional perimeter and by J ? - for ? 2 .(d; 0)- the ?-Riesz energies acting on characteristic functions, we prove that both functionals can be seen as limits of renormalized self-attractive energies as well as limits of repulsive interactions between a set and its complement. We also show that the functionals H? and J ? , up to a suitable additive renormalization diverging when ? ? 0, belong to a continuous one-parameter family of functionals, which for ?

Relations, models and a memetic approach for three degree-dependent spanning tree problems

In this paper we take into account three different spanning tree problems with degree-dependent objective functions. The main application of these problems is in the field of optical network design. In particular, we propose the classical Minimum Leaves Spanning Tree problem as a relevant problem in this field and show its relations with the Minimum Branch Vertices and the Minimum Degree Sum Problems. We present a unified memetic algorithm for the three problems and show its effectiveness on a wide range of test instances. © 2013 Elsevier B.V. All rights reserved.

Heuristic approaches for the Minimum Labelling Hamiltonian Cycle Problem

Given a graph G with a label (color) assigned to each edge (not necessarily properly) we look for an hamiltonian cycle of G with the minimum number of different colors. The problem has several applications in telecommunication networks, electric networks, multimodal transportation networks, among others, where one aims to ensure connectivity or other properties by means of limited number of different connections. We analyze the complexity of the problem on special graph classes and propose, for the general case, heuristic resolution algorithms.

Column Generation Embedding Carousel Greedy for the Maximum Network Lifetime Problem with Interference Constraints

We aim to maximize the operational time of a network of sensors, which are used to monitor a predefined set of target locations. The classical approach proposed in the literature consists in individuating subsets of sensors (covers) that can individually monitor the targets, and in assigning appropriate activation times to each cover. Indeed, since sensors may belong to multiple covers, it is important to make sure that their overall battery capacities are not violated.