Interpolation-based, minimum-time piecewise constant control of linear continuous-time SISO systems

We present a novel approach to the system inversion problem for linear, scalar (i.e. single-input, single-output, or SISO) plants. The problem is formulated as a constrained optimization program, whose objective function is the transition time between the initial and the final values of the system's output, and the constraints are (i) a threshold on the input intensity and (ii) the requirement that the system's output interpolates a given set of points. The system's input is assumed to be a piecewise constant signal.

Parameter estimation techniques for a chemotaxis model inspired by Cancer-on-Chip (COC) experiments

The present work is inspired by laboratory experiments, investigating the cross-talk between immune and cancer cells in a confined environment given by a microfluidic chip, the so called Organ-on-Chip (OOC). Based on a mathematical model in form of coupled reaction-diffusion-transport equations with chemotactic functions, our effort is devoted to the development of a parameter estimation methodology that is able to use real data obtained from the laboratory experiments to estimate the model parameters and infer the most plausible chemotactic function present in the experiment.

Effects of COVID-19 lockdown on weight in a cohort of allergic children and adolescents

Background COVID-19 lockdown caused sudden changes in people's lifestyle, as a consequence of the forced lockdown imposed by governments all over the world. We aimed to evaluate the impact of lockdown on body mass index (BMI) in a cohort of allergic children and adolescents. Methods From the first of June until the end of October 2020, we submitted a written questionnaire to all the patients who, after lockdown, carried out a visit at the Pediatric Allergy Unit of the Department of Mother-Child, Urological Science, Sapienza University of Rome.

Traveling Band Solutions in a System Modeling Hunting Cooperation

A classical Lotka-Volterra model with the logistical growth of prey-and-hunting coopera- tion in the functional response of predators to prey was extended by introducing advection terms, which included the velocities of animals. The effect of velocity on the kinetics of the problem was analyzed. In order to examine the band behavior of species over time, traveling wave solutions were introduced, and conditions for the coexistence of both populations and/or extinction were found. Numerical simulations illustrating the obtained results were performe

Hydrodynamic effects on the liquid-hexatic transition of active colloids

We study numerically the role of hydrodynamics in the liquid-hexatic transition of active colloids at intermediate activity, where motility induced phase separation (MIPS) does not occur. We show that in the case of active Brownian particles (ABP), the critical density of the transition decreases upon increasing the particle's mass, enhancing ordering, while self-propulsion has the opposite effect in the activity regime considered.