Computational performance of SequenceL coding of the lattice Boltzmann method for multi-particle flow simulations

This paper reports, for the first time, the computational performance of SequenceL for mesoscale simulations of large numbers of particles in a microfluidic device via the lattice-Boltzmann method. The performance of SequenceL simulations was assessed against the optimized serial and parallelized (via OpenMP directives) FORTRAN90 simulations. At present, OpenMP directives were not included in interparticle and particle-wall repulsive (steric) interaction calculations due to difficulties that arose from inter-iteration dependencies between consecutive iterations of the do-loops.

General velocity, pressure, and initial condition for two-dimensional and three-dimensional lattice Boltzmann simulations

In this paper, an alternative approach to implement initial and boundary conditions in the lattice Boltzmann method is presented. The main idea is to approximate the nonequilibrium component of distribution functions as a third-order power series in the lattice velocities and formulate a procedure to determine boundary node distributions by using fluid variables, consistent with such an expansion. The velocity shift associated with the body force effects is included in this scheme, along with an approximation to determine the mass density in complex geometries.

Wet to dry self-transitions in dense emulsions: From order to disorder and back

One of the most distinctive hallmarks of many-body systems far from equilibrium is the spontaneous emergence of order under conditions where disorder would be plausibly expected. Here, we report on the self-transition between ordered and disordered emulsions in divergent microfluidic channels, i.e., from monodisperse assemblies to heterogeneous polydisperse foamlike structures, and back again to ordered ones.

Neural oscillations track natural but not artificial fast speech: Novel insights from speech-brain coupling using MEG

Neural oscillations contribute to speech parsing via cortical tracking of hierarchical linguistic structures, including syllable rate. While the properties of neural entrainment have been largely probed with speech stimuli at either normal or artificially accelerated rates, the important case of natural fast speech has been largely overlooked. Using magnetoencephalography, we found that listening to naturally-produced speech was associated with cortico-acoustic coupling, both at normal (~6 syllables/s) and fast (~9 syllables/s) rates, with a corresponding shift in peak entrainment frequency.

Radiative contributions to gravitational scattering

The linear-order effects of radiation-reaction on the classical scattering of two point masses, in general relativity, are derived by a variation-of-constants method. Explicit expressions for the radiation-reaction contributions to the changes of 4-momentum during scattering are given to linear order in the radiative losses of energy, linear-momentum, and angular momentum. The polynomial dependence on the masses of the 4-momentum changes is shown to lead to nontrivial identities relating the various radiative losses.

Characterizing networks of propaganda on twitter: a case study

The daily exposure of social media users to propaganda and disinformation campaigns has reinvigorated the need to investigate the local and global patterns of diffusion of different (mis)information content on social media. Echo chambers and influencers are often deemed responsible of both the polarization of users in online social networks and the success of propaganda and disinformation campaigns. This article adopts a data-driven approach to investigate the structuration of communities and propaganda networks on Twitter in order to assess the correctness of these imputations.

Disordered interfaces in soft fluids with suspended colloids

Computer simulations of bi-continuous two-phase fluids with interspersed dumbbells show that, unlike rigid colloids, soft dumbbells do not lead to arrested coarsening. However, they significantly alter the curvature dynamics of the fluid-fluid interface, whose probability density distributions are shown to exhibit (i) a universal spontaneous transition (observed even in the absence of colloids) from an initial broad-shape distribution towards a highly localized one and (ii) super-diffusive dynamics with long-range effects.

A HYBRID MODEL OF COLLECTIVE MOTION OF DISCRETE PARTICLES UNDER ALIGNMENT AND CONTINUUM CHEMOTAXIS

In this paper we propose and study a hybrid discrete-continuous mathematical model of collective motion under alignment and chemotaxis effect. Starting from paper [23], in which the Cucker-Smale model [22] was coupled with other cell mechanisms, to describe the cell migration and self-organization in the zebrafish lateral line primordium, we introduce a simplified model in which the coupling between an alignment and chemotaxis mechanism acts on a system of interacting particles.