Computational performance of SequenceL coding of the lattice Boltzmann method for multi-particle flow simulations
This paper reports, for the first time, the computational performance of SequenceL for mesoscale simulations of large numbers of particles in a microfluidic device via the lattice-Boltzmann method. The performance of SequenceL simulations was assessed against the optimized serial and parallelized (via OpenMP directives) FORTRAN90 simulations. At present, OpenMP directives were not included in interparticle and particle-wall repulsive (steric) interaction calculations due to difficulties that arose from inter-iteration dependencies between consecutive iterations of the do-loops.