The FORUM End-to-End Simulator project: architecture and results

FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) will flight as the 9th ESA's Earth Explorer mission, and an End-to-End Simulator (E2ES) has been developed as a support tool for the mission selection process and the subsequent development phases. The current status of the FORUM E2ES project is presented, together with the characterization of the capabilities of a full physics retrieval code applied to FORUM data.

Frequency domain analysis of the gravitational wave energy loss in hyperbolic encounters

The energy radiated (without the 1.5PN tail contribution which requires a different treatment) by a binary system of compact objects moving in a hyperboliclike orbit is computed in the frequency domain through the second post-Newtonian level as an expansion in the large-eccentricity parameter up to next-to-next-to-leading order, completing the time domain corresponding information (fully known in closed form at the second post-Newtonian of accuracy).

Rayleigh-Bénard convection of a model emulsion: anomalous heat-flux fluctuations and finite-size droplet effects

We present mesoscale numerical simulations of Rayleigh-Bénard (RB) convection in a two-dimensional model emulsion. The systems under study are constituted of finite-size droplets, whose concentration is systematically varied from small (Newtonian emulsions) to large values (non-Newtonian emulsions). We focus on the characterisation of the heat transfer properties close to the transition from conductive to convective states, where it is well known that a homogeneous Newtonian system exhibits a steady flow and a time-independent heat flux.

Classification of Particle Numbers with Unique Heitmann-Radin Minimizer

We show that minimizers of the Heitmann-Radin energy (Heitmann and Radin in J Stat Phys 22(3): 281-287, 1980) are unique if and only if the particle number N belongs to an infinite sequence whose first thirty-five elements are 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120 (see the paper for a closed-form description of this sequence).

On the regularity of solutions to a class of degenerate PDE's with lower order terms

In this paper we establish the boundedness and the higher differentiability of solutions to the {div(A(x,Du))+b(x)|u(x)|u(x)=fin ?u=0on ?? under a Sobolev assumption on the partial map x->A(x,?). The novelty here is that we deal with degenerate elliptic operator A(x,?) with p-growth, p>=2, with respect to the gradient variable, in presence of lower order terms. The interplay between b(x) and f(x), introduced in ([1]), gives a regularizing effect also in the degenerate elliptic setting.

Energy-preserving splitting integrators for sampling from Gaussian distributions with Hamiltonian Monte Carlo method

The diffusive behaviour of simple random-walk proposals of many Markov Chain Monte Carlo (MCMC) algorithms results in slow exploration of the state space making inefficient the convergence to a target distribution. Hamiltonian/Hybrid Monte Carlo (HMC), by introducing fictious momentum variables, adopts Hamiltonian dynamics, rather than a probability distribution, to propose future states in the Markov chain. Splitting schemes are numerical integrators for Hamiltonian problems that may advantageously replace the St¨ormer-Verlet method within HMC methodology.

Immunoinformatics based designing a multi-epitope vaccine against pathogenic Chandipura vesiculovirus

Chandipura vesiculovirus (CHPV) is a rapidly emerging pathogen responsible for causing acute encephalitis. Due to its widespread occurrence in Asian and African countries, this has become a global threat, and there is an urgent need to design an effective and nonallergenic vaccine against this pathogen. The present study aimed to develop a multi-epitope vaccine using an immunoinformatics approach. The conventional method of vaccine design involves large proteins or whole organism which leads to unnecessary antigenic load with increased chances of allergenic reactions.