Optimized modeling and design of a pcm-enhanced h2 storage

Thermal and mechanical energy storage is pivotal for the effective exploitation of renewable energy sources, thus fostering the transition to a sustainable economy. Hydrogen-based systems are among the most promising solutions for electrical energy storage. However, several technical and economic barriers (e.g., high costs, low energy and power density, advanced material requirements) still hinder the diffusion of such solutions.

AMG Preconditioners for Linear Solvers towards Extreme Scale

Linear solvers for large and sparse systems are a key element of scientific applications, and their efficient implementation is necessary to harness the computational power of current computers. Algebraic Multigrid (AMG) Preconditioners are a popular ingredient of such linear solvers; this is the motivation for the present work where we examine some recent developments in a package of AMG preconditioners to improve efficiency, scalability and robustness on extreme scale problems.

An eigenvalue problem in anisotropica Orlicz.Sobolev spaces

The existence of eigenfunctions for a class of fully anisotropic elliptic equations is estab- lished. The relevant equations are associated with constrained minimization problems for inte- gral functionals depending on the gradient of competing functions through general anisotropic Young functions. In particular, the latter need neither be radial, nor have a polynomial growth, and are not even assumed to satisfy the so called 2-condition. In particular, our analysis re- quires the development of some new aspects of the theory of anisotropic Orlicz-Sobolev spaces. This is a joint work with G.

GNSS and SAR Signal Delay in Perturbed Ionospheric D-Region During Solar X-Ray Flares

We investigate the influence of the perturbed (by a solar X-ray flare) ionospheric D-region on the global navigation satellite systems (GNSS) and synthetic aperture radar (SAR) signals. We calculate a signal delay in the D-region based on the low ionospheric monitoring by very-low-frequency (VLF) radio waves. The results show that the ionospheric delay in the perturbed D-region can be important and, therefore, should be taken into account in modeling the ionospheric influence on the GNSS and SAR signal propagation and in calculations relevant for space geodesy.

Tracking droplets in soft granular flows with deep learning techniques

The state-of-the-art deep learning-based object recognition YOLO algorithm and object tracking DeepSORT algorithm are combined to analyze digital images from fluid dynamic simulations of multi-core emulsions and soft flowing crystals and to track moving droplets within these complex flows. The YOLO network was trained to recognize the droplets with synthetically prepared data, thereby bypassing the labor-intensive data acquisition process.

Macroscopic and multi-scale models for multi-class vehicular dynamics with uneven space occupancy: A case study

In this paper, we propose two models describing the dynamics of heavy and light vehicles on a road network, taking into account the interactions between the two classes. The models are tailored for two-lane highways where heavy vehicles cannot overtake. This means that heavy vehicles cannot saturate the whole road space, while light vehicles can. In these conditions, the creeping phenomenon can appear, i.e., one class of vehicles can proceed even if the other class has reached the maximal density.

Network Clustering by Embedding of Attribute-augmented Graphs

In this paper we propose a new approach to detect clusters in undirected graphs with attributed vertices. The aim is to group vertices which are similar not only in terms of structural connectivity but also in terms of attribute values. We incorporate structural and attribute similarities between the vertices in an augmented graph by creating additional vertices and edges as proposed in [6, 38]. The augmented graph is then embedded in a Euclidean space associated to its Laplacian where a modified K-means algorithm is applied to identify clusters.

Higher-order tail contributions to the energy and angular momentum fluxes in a two-body scattering process

The need for more and more accurate gravitational-wave templates requires taking into account all possible contributions to the emission of gravitational radiation from a binary system. Therefore, working within a multipolar-post-Minkowskian framework to describe the gravitational-wave field in terms of the source multipole moments, the dominant instantaneous effects should be supplemented by hereditary contributions arising from nonlinear interactions between the multipoles.