The core-radius approach to supercritical fractional perimeters, curvatures and geometric flows
We consider a core-radius approach to nonlocal perimeters governed by isotropic kernels having critical and supercritical exponents, extending the nowadays classical notion of s-fractional perimeter, defined for 0<s<1, to the case s>=1. We show that, as the core-radius vanishes, such core-radius regularized s-fractional perimeters, suitably scaled, ?-converge to the standard Euclidean perimeter.