A Novel Fractional-Order RothC Model

A new fractional q-order variation of the RothC model for the dynamics of soil organic carbon is introduced. A computational method based on the discretization of the analytic solution along with the finite-difference technique are suggested and the stability results for the latter are given. The accuracy of the scheme, in terms of the temporal step size h, is confirmed through numerical testing of a constructed analytic solution. The effectiveness of the proposed discrete method is compared with that of the classical discrete RothC model.

A Molecular Dynamics Study of the Evolving Melt Front under Gravity

During melting under gravity in the presence of a horizontal thermal gradient, buoyancy-driven convection in the liquid phase affects significantly the evolution of the liquid-solid interface. Due to the obvious engineering interest in understanding and controlling melting processes, fluid dynamicists and applied mathematicians have spent many efforts to model and simulate them numerically. Their endeavors concentrated in the twenty-five years period between the publication of the paper by Brent, Voller & Reid (1988) and that by Mansutti & Bucchignani (2011).

Approximate Method to Compute Hypersingular Finite-Part Integrals with Rapidly Oscillating Kernels

In this paper, an algorithm for the numerical evaluation of hypersingular finite-part integrals with rapidly oscillating kernels is proposed. The method is based on an interpolatory procedure at zeros of the orthogonal polynomials with respect to the first kind Chebyshev weight. Bounds of the error and of the amplification factor are also provided. Numerically stable procedure are obtained and the corresponding algorithms can be implemented in a fast way.

SOC-reactivity analysis for a newly defined class of two-dimensional soil organic carbon dynamics

To evaluate changes in the Soil Organic Carbon (SOC) index, one of the key indicators of land degradation neutrality, soil carbon modeling is of primary importance. In litera-ture, the analysis has been focused on the stability characterization of soil carbon steady states and in the calculation of the resilience of the stable equilibria. Neither stability nor resilience, however, provide any information about transient dynamics, and models with highly resilient equilibria can exhibit dramatic transient responses to perturbations.

The "Lost Guardians" of Dante's Inferno: Medium Wave Infrared Imaging Investigations of a XIV Century Illuminated Manuscript

On the occasion of the 700th centenary of the death of Dante Alighieri, medium wave infrared imaging analysis of illuminations of the XIV-century code of the Divina Commedia (MS. 1102), hosted in the Biblioteca Angelica in Rome, was performed and discussed. The investigation was carried out by means of thermographic and reflectographic techniques on illuminations where the iconographic representation appeared severely damaged.

A computational model of the effects of macronutrients absorption and physical exercise on hormonal regulation and metabolic homeostasis

Regular physical exercise and appropriate nutrition affect metabolic and hormonal responses and may reduce the risk of developing chronic non-communicable diseases such as high blood pressure, ischemic stroke, coronary heart disease, some types of cancer, and type 2 diabetes mellitus. Computational models describing the metabolic and hormonal changes due to the synergistic action of exercise and meal intake are, to date, scarce and mostly focussed on glucose absorption, ignoring the contribution of the other macronutrients.