VERBALE 2/2023

1. Comunicazioni del Direttore

2. Aggiornamenti sull'avanzamento dei progetti PNRR

3. Iniziative di divulgazione

4. Situazione logistica della sede di Bari

5. Aggiornamenti relativi alle GORU

6.Aggiornamenti sulla giornata IAC di dicembre

7. Varie ed eventuali

Rational QZ Steps with perfect shifts

In this paper we analyze the stability of the problem of performing a rational QZ$step with a shift that is an eigenvalue of a given regular pencil H-lambda K in unreduced Hessenberg-Hessenberg form. In exact arithmetic, the backward rational QZ step moves the eigenvalue to the top of the pencil, while the rest of the pencil is maintained in Hessenberg-Hessenberg form, which then yields a deflation of the given shift. But in finite-precision the rational QZ step gets ``blurred'' and precludes the deflation of the given shift at the top of the pencil.

A non-standard numerical method preserving global properties of integro-differential systems

We propose a numerical method for a general integro-differential system of equations which includes a number of age-of-infection epidemic models in the literature [1, 2]. The numerical solution is obtained by a non-standard discretization of the nonlinear terms in the system, and agrees with the analytical solution in many important qualitative aspects. Both the behaviour at finite time and the asymptotic properties of the solution are preserved for any value of the discretization parameter.

A renewal equation approach to behavioural epidemic models: analytical and numerical issues

Epidemic models structured by the age of infection can be formulated in terms of a system of renewal equations and represent a very general mathematical framework for the analysis of infectious diseases ([1, 2]). Here, we propose a formulation of renawal equations that takes into account of the behavioral response of individuals to infection. We use the so called "information index", which is a distributed delay that summarizes the information available on current and past disease trend, and extend some results regarding compartmental behavioral models [3, 4, 5].

Nonlocal finite dffierence discretization of a class of renewal equation models for epidemics

In this paper we consider a non-standard discretization to a Volterra integro-dierential system which includes a number of age-of-infection models in the literature. The aim is to provide a general framework to analyze the proposed scheme for the numerical solution of a class of problems whose continuous dynamic is well known in the literature and allow a deeper analysis in cases where the theory lacks

A long-time behavior preserving numerical scheme for age-of-infection epidemic models with heterogeneous mixing

In this manuscript we propose a numerical method for non-linear integro-differential systems arising in age-of-infection models in a heterogeneously mixed population. The discrete scheme is based on direct quadrature methods and provides an unconditionally positive and bounded solution. Furthermore, we prove the existence of the numerical final size of the epidemic and show that it tends to its continuous equivalent as the discretization steplength vanishes.

Screw dislocations in periodic media: Variational coarse graining of the discrete elastic energy

We study the asymptotic behavior, as the lattice spacing ? tends to zero, of the discrete elastic energy induced by topological singularities in an inhomogeneous ? periodic medium within a two-dimensional model for screw dislocations in the square lattice. We focus on the |log?| regime which, as ?->0 allows the emergence of a finite number of limiting topological singularities.

The variational approach to s-fractional heat flows and the limit cases s-+0+and s-+1-

This paper deals with the limit cases for s-fractional heat flows in a cylindrical domain, with homogeneous Dirichlet boundary conditions, as s-+ 0+ and s-+ 1-. We describe the fractional heat flows as minimizing move-ments of the corresponding Gagliardo seminorms, with re-spect to the L2 metric. To this end, we first provide a Gamma-convergence analysis for the s-Gagliardo seminorms as s-+ 0+ and s-+ 1-; then, we exploit an abstract stability result for minimizing movements in Hilbert spaces, with respect to a sequence of Gamma-converging uniformly lambda-convex energy function-als.

A multi-GPU aggregation-based AMG preconditioner for iterative linear solvers

We present and release in open source format a sparse linear solver which efficiently exploits heterogeneous parallel computers. The solver can be easily integrated into scientific applications that need to solve large and sparse linear systems on modern parallel computers made of hybrid nodes hosting Nvidia Graphics Processing Unit (GPU) accelerators.