Multiple-component lattice Boltzmann equation for fluid-filled vesicles in flow

We document the derivation and implementation of extensions to a two-dimensional, multicomponent lattice Boltzmann equation model, with Laplace law interfacial tension. The extended model behaves in such a way that the boundary between its immiscible drop and embedding fluid components can be shown to describe a vesicle of constant volume bounded by a membrane with conserved length, specified interface compressibility, bending rigidity, preferred curvature, and interfacial tension. We describe how to apply this result to several, independent vesicles.

Existence and regularity of minimizers of a functional for unsupervised multiphase segmentation

We consider a variational model for image segmentation proposed in Sandberg et al. (2010) [12]. In such a model the image domain is partitioned into a finite collection of subsets denoted as phases. The segmentation is unsupervised, i.e., the model finds automatically an optimal number of phases, which are not required to be connected subsets. Unsupervised segmentation is obtained by minimizing a functional of the Mumford-Shah type (Mumford and Shah, 1989 [1]), but modifying the geometric part of the Mumford-Shah energy with the introduction of a suitable scale term.

Splitting schemes and energy preservation for separable Hamiltonian systems

It is known that symplectic algorithms do not necessarily conserve energy even for the harmonic oscillator. However, for separable Hamiltonian systems, splitting and composition schemes have the advantage to be explicit and can be constructed to preserve energy. In this paper we describe and test an integrator built on a one-parameter family of symplectic symmetric splitting methods, where the parameter is chosen at each time step so as to minimize the energy error.

Existence of minimizers of the Mumford-Shah functional with singular operators and unbounded data

We consider the regularization of linear inverse problems by means of the minimization of a functional formed by a term of discrepancy to data and a Mumford-Shah functional term. The discrepancy term penalizes the L 2 distance between a datum and a version of the unknown function which is filtered by means of a non-invertible linear operator.