A diffuse cohesive energy approach to fracture and plasticity: the one-dimensional case

In the fracture model presented in this paper, the basic assumption is that the energy is the sum of two terms, one elastic and one cohesive, depending on the elastic and inelastic part of the deformation, respectively. Two variants are examined: a local model, and a nonlocal model obtained by adding a gradient term to the cohesive energy.

Solar System constraints to nonminimally coupled gravity

We extend the analysis of Chiba et al. [Phys. Rev. D 75, 124014 (2007)] of Solar System constraints on f(R) gravity to a class of nonminimally coupled (NMC) theories of gravity. These generalize f(R) theories by replacing the action functional of general relativity with a more general form involving two functions f1(R) and f2(R) of the Ricci scalar curvature R. While the function f1(R) is a nonlinear term in the action, analogous to f(R) gravity, the function f2(R) yields a NMC between the matter Lagrangian density Lm and the scalar curvature.

Applications and limitations of remote sensing for threat analysis in protected areas: inferring anthropic pressure from habitat and land cover impacts

Protected areas are continuously subjected to ecological change due to anthropic pressures. Analyses of changes in the extent and intensity of pressures over time are essential for adaptive management, yet such analyses are rarely conceptualized or performed in a well-defined, standardized way, with a frequent lack of clarity in development, definition and measurement. Over-time remote sensing data has great potential for mapping spatial pattern of pressures and their impacts. Some pressures can be mapped directly (e.g.