Lamellar ordering, droplet formation and phase inversion in exotic active emulsions

We study numerically the behaviour of a two-dimensional mixture of a passive isotropic fluid and an active polar gel, in the presence of a surfactant favouring emulsification. Focussing on parameters for which the underlying free energy favours the lamellar phase in the passive limit, we show that the interplay between nonequilibrium and thermodynamic forces creates a range of multifarious exotic emulsions.

Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular Dynamics

Photocurable polymers are used ubiquitously in 3D printing, coatings, adhesives, and composite fillers. In the present work, the free radical polymerization of photocurable compounds is studied using reactive classical molecular dynamics combined with a dynamical approach of the nonequilibrium molecular dynamics (D-NEMD). Different concentrations of radicals and reaction velocities are considered.

Switching hydrodynamics in liquid crystal devices: A simulation perspective

In liquid crystal devices it is important to understand the physics underlying their switching between different states, which is usually achieved by applying or removing an electric field. Flow is known to be a key determinant of the timescales and pathways of the switching kinetics. Incorporating hydrodynamic effects into theories for liquid crystal devices is therefore important; however this is also highly non-trivial, and typically requires the use of accurate numerical methods.

Approach to iron corrosion via the numerical simulation of a galvanic cell

A mathematical model of the galvanic iron corrosion is, here, presented. The iron(III)-hydroxide formation is considered together with the redox reaction. The PDE system, assembled on the basis of the fundamental holding electro-chemistry laws, is numerically solved by a locally refined FD method. For verification purpose we have assembled an experimental galvanic cell; in the present work, we report two tests cases, with acidic and neutral electrolitical solution, where the computed electric potential compares well with the measured experimental one

A heuristic algorithm solving the mutual-exclusivity-sorting problem

Motivation: Binary (or Boolean) matrices provide a common effective data representation adopted in several domains of computational biology, especially for investigating cancer and other human diseases. For instance, they are used to summarize genetic aberrations--copy number alterations or mutations--observed in cancer patient cohorts, effectively highlighting combinatorial relations among them. One of these is the tendency for two or more genes not to be co-mutated in the same sample or patient, i.e. a mutual-exclusivity trend.

Sulfavant A as the first synthetic TREM2 ligand discloses a homeostatic response of dendritic cells after receptor engagement

Objective The immune response arises from a fne balance of mechanisms that provide for surveillance, tolerance, and elimination of dangers. Sulfavant A (SULF A) is a sulfolipid with a promising adjuvant activity. Here we studied the mechanism of action of SULF A and addressed the identifcation of its molecular target in human dendritic cells (hDCs). Methods Adjuvant efect and immunological response to SULF A were assessed on DCs derived from human donors.

Wake flow past a plate with spoiler II: Gravity effects

The effects of transverse gravity on steady flow past a split plate are investigated, by adopting the wake model proposed in the preceding paper (I). The existence and uniqueness of the solution as well as the convergence of an iteration process involving the free streamlines are proved for large Froude numbers by means of the Banach contraction mapping principle using Lipschitz norms. © 1986 Birkhäuser Verlag.

Spontaneous motility of passive emulsion droplets in polar active gels

We study by computer simulations the dynamics of a droplet of passive, isotropic fluid, embedded in a polar active gel. The latter represents a fluid of active force dipoles, which exert either contractile or extensile stresses on their surroundings, modelling for instance a suspension of cytoskeletal filaments and molecular motors. When the polarisation of the active gel is anchored normal to the droplet at its surface, the nematic elasticity of the active gel drives the formation of a hedgehog defect; this defect then drives an active flow which propels the droplet forward.