On the impact of controlled wall roughness shape on the flow of a soft material
We explore the impact of geometrical corrugations on the near-wall flow properties of a soft material driven in a confined rough microchannel. By means of numerical simulations, we perform a quantitative analysis of the relation between the flow rate ? and the wall stress ?w for a number of setups, by changing both the roughness values as well as the roughness shape. Roughness suppresses the flow, with the existence of a characteristic value of ?w at which flow sets in. Just above the onset of flow, we quantitatively analyze the relation between ? and ?w.
Combined effects of fluid type and particle shape on particles flow in microfluidic platforms
Recent numerical analyses to optimize the design of microfluidic devices for more effective entrapment or segregation of surrogate circulating tumor cells (CTCs) from healthy cells have been reported in the literature without concurrently accommodating the non-Newtonian nature of the body fluid and the non-uniform geometric shapes of the CTCs.
Forensic analysis of Microsoft Skype for Business
We present three case studies to illustrate a methodology for conducting forensics investigation on Microsoft Skype for Business. The proposed methodology helps to retrieve information on chat and audio communications made by any account who accessed the PC, to retrieve IP addresses and communication routes for all the participants of a call, and to retrieve forensics evidence to identify the end-user devices of a VoIP call by analyzing the CODECs exchanged by the clients during the SIP (Session Initiation Protocol) handshaking phase.
A free boundary model for the evolution of a geothermal system
The evolution of a geothermal system is studied. A mathematical model is proposed and the corresponding free boundary problem is formulated in a one-dimensional geometry. A situation corresponding to the geothermal field in Larderello, Tuscany (Italy) is considered, showing that the problem has two characteristic time scales, related to the motion of interface and diffusion of vapor.
The phenotypic variations of multi-locus imprinting disturbances associated with maternal-effect variants of NLRP5 range from overt imprinting disorder to apparently healthy phenotype
Background
A subset of individuals affected by imprinting disorders displays multi-locus imprinting disturbances (MLID). MLID has been associated with maternal-effect variants that alter the maintenance of methylation at germline-derived differentially methylated regions (gDMRs) in early embryogenesis. Pedigrees of individuals with MLID also include siblings with healthy phenotype.