Machine learning assisted droplet trajectories extraction in dense emulsions
This work analyzes trajectories obtained by YOLO and DeepSORT algorithms of dense emulsion systems simulated via lattice Boltzmann methods. The results indicate that the individual droplet's moving direction is influenced more by the droplets immediately behind it than the droplets in front of it. The analysis also provide hints on constraints of a dynamical model of droplets for the dense emulsion in narrow channels.
A heuristic algorithm solving the mutual-exclusivity-sorting problem
Motivation: Binary (or Boolean) matrices provide a common effective data representation adopted in several domains of computational biology, especially for investigating cancer and other human diseases. For instance, they are used to summarize genetic aberrations--copy number alterations or mutations--observed in cancer patient
cohorts, effectively highlighting combinatorial relations among them. One of these is the tendency for two or more genes not to be co-mutated in the same sample or patient, i.e. a mutual-exclusivity trend.
Wake flow past a plate with spoiler II: Gravity effects
The effects of transverse gravity on steady flow past a split plate are investigated, by adopting the wake model proposed in the preceding paper (I). The existence and uniqueness of the solution as well as the convergence of an iteration process involving the free streamlines are proved for large Froude numbers by means of the Banach contraction mapping principle using Lipschitz norms. © 1986 Birkhäuser Verlag.
Formation of calcium phosphate nanoparticles in the presence of carboxylate molecules: a time-resolved in situ synchrotron SAXS and WAXS study
In this work we have studied in situ the formation and growth of calcium phosphate (CaP) nanoparticles (NPs) in the presence of three calcium-binding carboxylate molecules having different affinities for Ca2+ ions: citrate (Cit), hydroxycitrate (CitOH), and glutarate (Glr). The formation of CaP NPs at several reaction temperatures ranging from 25 degrees C to 80 degrees C was monitored in situ through simultaneous Small and Wide X-ray Scattering (SAXS/WAXS) using synchrotron light. SAXS was used to investigate the first stages of NP formation where a crystalline order is not yet formed.
Simulating Polymerization by Boltzmann Inversion Force Field Approach and Dynamical Nonequilibrium Reactive Molecular Dynamics
The radical polymerization process of acrylate compounds is, nowadays, numerically investigated using classical force fields and reactive molecular dynamics, with the aim to probe the gel-point transition as a function of the initial radical concentration. In the present paper, the gel-point transition of the 1,6-hexanediol dimethacrylate (HDDMA) is investigated by a coarser force field which grants a reduction in the computational costs, thereby allowing the simulation of larger system sizes and smaller radical concentrations.
Evaluating the impact of increasing temperatures on changes in Soil Organic Carbon stocks: sensitivity analysis and non-standard discrete approximation
The SOC change index, defined as the normalized difference between the actual Soil Organic Carbon and the value assumed at an initial reference year, is here tailored to the RothC carbon model dynamics. It assumes as a baseline the value of the SOC equilibrium under constant environmental conditions. A sensitivity analysis is performed to evaluate the response of the model to changes in temperature, Net Primary Production (NPP), and land use soil class (forest, grassland, arable).
Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular Dynamics
Photocurable polymers are used ubiquitously in 3D printing, coatings, adhesives, and composite fillers. In the present work, the free radical polymerization of photocurable compounds is studied using reactive classical molecular dynamics combined with a dynamical approach of the nonequilibrium molecular dynamics (D-NEMD). Different concentrations of radicals and reaction velocities are considered.
Approach to iron corrosion via the numerical simulation of a galvanic cell
A mathematical model of the galvanic iron corrosion is, here, presented. The iron(III)-hydroxide formation is considered together with the redox reaction. The PDE system, assembled on the basis of the fundamental holding electro-chemistry laws, is numerically solved by a locally refined FD method. For verification purpose we have assembled an experimental galvanic cell; in the present work, we report two tests cases, with acidic and neutral electrolitical solution, where the computed electric potential compares well with the measured experimental one