A Stk4 -Foxp3-p65 transcriptional complex promotes Treg cell activation and homeostasis.

The molecular programs involved in regulatory T (Treg) cell activation and homeostasis remain incompletely understood. Here, we show that T cell receptor (TCR) signaling in Treg cells induces the nuclear translocation of serine/threonine kinase 4 (Stk4), leading to the formation of an Stk4-NF-?B p65-Foxp3 complex that regulates Foxp3- and p65-dependent transcriptional programs. This complex was stabilized by Stk4-dependent phosphorylation of Foxp3 on serine-418.

PROCONSUL: PRObabilistic exploration of CONnectivity Significance patterns for disease modULe discovery

The possibility to computationally prioritize candi- date disease genes capitalizing on existing information has led to a speedup in the discovery of new methods. Many gene discovery techniques exploit network data, like protein-protein interactions (PPIs), in order to extract knowledge from the network structure relying on several network metrics. We here present PROCONSUL, a method that builds on top of the concept of connectivity significance (CS) and exploits the idea of probabilistic exploration of the space of putative disease genes.

STABILITY AND ERRORS ESTIMATES OF A SECOND-ORDER IMSP SCHEME

We analyze a second-order accurate implicit-symplectic (IMSP) scheme for reaction-diffusion systems modeling spatiotemporal dynamics of predator-prey populations. We prove stability and errors estimates of the semi-discrete-in-time approximations, under positivity assumptions. The numerical simulations confirm the theoretically derived rates of convergence and show an improved accuracy in the second-order IMSP in comparison with the first-order IMSP, at same computational cost.

Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular Dynamics

Photocurable polymers are used ubiquitously in 3D printing, coatings, adhesives, and composite fillers. In the present work, the free radical polymerization of photocurable compounds is studied using reactive classical molecular dynamics combined with a dynamical approach of the nonequilibrium molecular dynamics (D-NEMD). Different concentrations of radicals and reaction velocities are considered.

Evaluating the impact of increasing temperatures on changes in Soil Organic Carbon stocks: sensitivity analysis and non-standard discrete approximation

The SOC change index, defined as the normalized difference between the actual Soil Organic Carbon and the value assumed at an initial reference year, is here tailored to the RothC carbon model dynamics. It assumes as a baseline the value of the SOC equilibrium under constant environmental conditions. A sensitivity analysis is performed to evaluate the response of the model to changes in temperature, Net Primary Production (NPP), and land use soil class (forest, grassland, arable).

Simulating Polymerization by Boltzmann Inversion Force Field Approach and Dynamical Nonequilibrium Reactive Molecular Dynamics

The radical polymerization process of acrylate compounds is, nowadays, numerically investigated using classical force fields and reactive molecular dynamics, with the aim to probe the gel-point transition as a function of the initial radical concentration. In the present paper, the gel-point transition of the 1,6-hexanediol dimethacrylate (HDDMA) is investigated by a coarser force field which grants a reduction in the computational costs, thereby allowing the simulation of larger system sizes and smaller radical concentrations.

A heuristic algorithm solving the mutual-exclusivity-sorting problem

Motivation: Binary (or Boolean) matrices provide a common effective data representation adopted in several domains of computational biology, especially for investigating cancer and other human diseases. For instance, they are used to summarize genetic aberrations--copy number alterations or mutations--observed in cancer patient cohorts, effectively highlighting combinatorial relations among them. One of these is the tendency for two or more genes not to be co-mutated in the same sample or patient, i.e. a mutual-exclusivity trend.

Formation of calcium phosphate nanoparticles in the presence of carboxylate molecules: a time-resolved in situ synchrotron SAXS and WAXS study

In this work we have studied in situ the formation and growth of calcium phosphate (CaP) nanoparticles (NPs) in the presence of three calcium-binding carboxylate molecules having different affinities for Ca2+ ions: citrate (Cit), hydroxycitrate (CitOH), and glutarate (Glr). The formation of CaP NPs at several reaction temperatures ranging from 25 degrees C to 80 degrees C was monitored in situ through simultaneous Small and Wide X-ray Scattering (SAXS/WAXS) using synchrotron light. SAXS was used to investigate the first stages of NP formation where a crystalline order is not yet formed.