Switching hydrodynamics in liquid crystal devices: A simulation perspective

In liquid crystal devices it is important to understand the physics underlying their switching between different states, which is usually achieved by applying or removing an electric field. Flow is known to be a key determinant of the timescales and pathways of the switching kinetics. Incorporating hydrodynamic effects into theories for liquid crystal devices is therefore important; however this is also highly non-trivial, and typically requires the use of accurate numerical methods.

A minimal physical model captures the shapes of crawling cells

Cell motility in higher organisms (eukaryotes) is crucial to biological functions ranging from wound healing to immune response, and also implicated in diseases such as cancer. For cells crawling on hard surfaces, significant insights into motility have been gained from experiments replicating such motion in vitro. Such experiments show that crawling uses a combination of actin treadmilling (polymerization), which pushes the front of a cell forward, and myosin-induced stress (contractility), which retracts the rear.

Image Scaling by de la Vallée-Poussin Filtered Interpolation

We present a new image scaling method both for downscaling and upscaling, running with any scale factor or desired size. The resized image is achieved by sampling a bivariate polynomial which globally interpolates the data at the new scale. The method's particularities lay in both the sampling model and the interpolation polynomial we use. Rather than classical uniform grids, we consider an unusual sampling system based on Chebyshev zeros of the first kind.

Sulfavant A as the first synthetic TREM2 ligand discloses a homeostatic response of dendritic cells after receptor engagement

Objective The immune response arises from a fne balance of mechanisms that provide for surveillance, tolerance, and elimination of dangers. Sulfavant A (SULF A) is a sulfolipid with a promising adjuvant activity. Here we studied the mechanism of action of SULF A and addressed the identifcation of its molecular target in human dendritic cells (hDCs). Methods Adjuvant efect and immunological response to SULF A were assessed on DCs derived from human donors.

The dynamics of colloidal intrusions in liquid crystals: A simulation perspective

Dispersing colloidal particles into liquid crystals provides a promising avenue to build a novel class of materials, with potential applications, among others, as photonic crystals, biosensors, metamaterials and new generation liquid crystal devices. Understanding the physics and dynamical properties of such composite materials is then of high-technological relevance; it also provides a remarkable challenge from a fundamental science point of view due to the intricacies of the hydrodynamic equations governing their dynamical evolution.

Final MIPAS L1 and L2 V8 full mission reprocessing, lessons learnt and possible further improvements

MIPAS is a Fourier Transform spectrometer that measured the atmospheric limb emission spectra in the middle infrared on board the ENVISAT satellite. These measurements allowed the global monitoring of the three-dimensional (latitude, longitude and altitude) distribution of temperature and of the concentrations of many species, during both day and night, for 10 years, from July 2002 to April 2012. MIPAS measurements allowed to study the atmosphere from the upper troposphere to the stratosphere and above, up to the thermosphere.

Le diverse declinazioni della matematica per lo sviluppo dell'intelligenza artificiale nei seminari "AIM - Fundamentals and beyond".

Tra novembre 2020 e giugno 2021, l'Istituto per le Applicazioni del Calcolo "Mauro Picone" (IAC) ha realizzato un ciclo di seminari dedicati al rapporto tra Intelligenza Artificiale e Matematica, denominato AIM - Artificial Intelligence and Mathematics - Fundamentlas and beyond.