The dynamics of colloidal intrusions in liquid crystals: A simulation perspective
Dispersing colloidal particles into liquid crystals provides a promising avenue to build a novel class of materials, with potential applications, among others, as photonic crystals, biosensors, metamaterials and new generation liquid crystal devices. Understanding the physics and dynamical properties of such composite materials is then of high-technological relevance; it also provides a remarkable challenge from a fundamental science point of view due to the intricacies of the hydrodynamic equations governing their dynamical evolution.