Petaflop biofluidics simulations on a two million-core system
We present a computational framework for multi-scale simulations of real-life biofluidic problems. The framework allows to simulate suspensions composed by hundreds of millions of bodies interacting with each other and with a surrounding fluid in complex geometries. We apply the methodology to the simulation of blood flow through the human coronary arteries with a spatial resolution comparable with the size of red blood cells, and physiological levels of hematocrit (the red blood cell volume fraction).