Numerical validation of the conjecture of a subglacial lake at Amundsenisen, Svalbard

The likelihood of a subglacial lake beneath Amundsenisen Plateau at Southern Spitzbergen, Svalbard, pointed out by the flat signal within the Ground Penetrating Radar (GPR) remote survey of the area, is justified, here, via numerical simulation.This investigation has been developed under the assumption that the icefield thickness does not change on average, as it is confirmed by recently published physical measurements taken over the past 40 years.

Use of an Advanced SAR Monitoring Technique to Monitor Old Embankment Dams

The work mainly discusses the use of the Ground-Based Synthetic Aperture Radar (GBSAR) interferometry technique to observe and control the behavior of earthfill or rockfill embankments for dam impoundments. This non-invasive technique provides overall displacements patterns measured with a sub-millimeter accuracy. The need of reliable monitoring of old embankment dams is rapidly increasing since a large number of these structures are still equipped with old monitoring devices, usually installed some decades ago, which can give only information on localized areas of the embankment.

Sequential quadrature methods for RDO

This paper presents a comparative study between a large number of different existing sequential quadrature schemes suitable for Robust Design Optimization (RDO), with the inclusion of two partly original approaches. Efficiency of the different integration strategies is evaluated in terms of accuracy and computational effort: main goal of this paper is the identification of an integration strategy able to provide the integral value with a prescribed accuracy using a limited number of function samples.

Long-range hydrodynamic effect due to a single vesicle in linear flow

Vesicles are involved in a vast variety of transport processes in living organisms. Additionally, they serve as a model for the dynamics of cell suspensions. Predicting the rheological properties of their suspensions is still an open question, as even the interaction of pairs is yet to be fully understood. Here we analyse the effect of a single vesicle, undergoing tank-treading motion, on its surrounding shear flow by studying the induced disturbance field delta(V) over right arrow, the difference between the velocity field in its presence and absence.

Multiscale hemodynamics using GPU clusters

The parallel implementation of MUPHY, a concurrent multiscale code for large-scale hemodynamic simulations in anatomically realistic geometries, for multi-GPU platforms is presented. Performance tests show excellent results, with a nearly linear parallel speed-up on up to 32GPUs and a more than tenfold GPU/CPU acceleration, all across the range of GPUs. The basic MUPHY scheme combines a hydrokinetic (Lattice Boltzmann) representation of the blood plasma, with a Particle Dynamics treatment of suspended biological bodies, such as red blood cells.

Tailored multivariate analysis for modulated enhanced

Modulated enhanced diffraction (MED) is a technique allowing the dynamic structural characterization of crystalline materials subjected to an external stimulus, which is particularly suited for in situ and operando structural investigations at synchrotron sources. Contributions from the (active) part of the crystal system that varies synchronously with the stimulus can be extracted by an offline analysis, which can only be applied in the case of periodic stimuli and linear system responses. In this paper a new decomposition approach based on multivariate analysis is proposed.

Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows

A new algorithm for the solution of free surface flows with large front deformation and fragmentation is presented. The algorithm is obtained by coupling a classical Finite Volume (FV) approach, that discretizes the Navier-Stokes equations on a block structured Eulerian grid, with an approach based on the Smoothed Particle Hydrodynamics (SPH) method, implemented in a Lagrangian framework.

A GENETIC ALGORITHM TO DESIGN TOURISTIC ROUTES IN A BIKE SHARING

The aim of this paper is to study a Bike Sharing Touring (BST) applying a mathematical model known in operation research as Orienteering Problem (OP). Several European Cities are developing BST in order to reduce the exhaust emissions and to improve the sustainability in urban areas. The authors offer a Decision Support Tool useful for the tourist and the service's manager to organize the tourists' paths on the basis of tourists' desires, subject to usable time, place of interest position and docking station location.