On the properties of a bundle of flexible actin filaments in an optical trap

We establish the statistical mechanics framework for a bundle of N-f living and uncrosslinked actin filaments in a supercritical solution of free monomers pressing against a mobile wall. The filaments are anchored normally to a fixed planar surface at one of their ends and, because of their limited flexibility, they grow almost parallel to each other. Their growing ends hit a moving obstacle, depicted as a second planar wall, parallel to the previous one and subjected to a harmonic compressive force.

Wavelet estimation and variable selection for additive partial linear models

Additive partial linear models with nonparametric additive components of heterogeneous smoothness are studied. To achieve optimal rates in large sample situations we use block wavelet penalisation techniques combined with adaptive (group) LASSO procedures for selecting the variables in the linear part and the the additive components in the nonparametric part of the models. Numerical implementations of our procedures for proximal like algorithms are discussed.

ISODAC: A high performance solution for indexing and searching heterogeneous data

Searching for words or sentences within large sets of textual documents can be very challenging unless an index of the data has been created in advance. However, indexing can be very time consuming especially if the text is not readily available and has to be extracted from files stored in different formats. Several solutions, based on the MapReduce paradigm, have been proposed to accelerate the process of index creation. These solutions perform well when data are already distributed across the hosts involved in the elaboration.

A factored sparse approximate inverse preconditioned conjugate gradient solver on graphics processing units

Graphics Processing Units (GPUs) exhibit significantly higher peak performance than conventional CPUs. However, in general only highly parallel algorithms can exploit their potential. In this scenario, the iterative solution to sparse linear systems of equations could be carried out quite efficiently on a GPU as it requires only matrix-by-vector products, dot products, and vector updates. However, to be really effective, any iterative solver needs to be properly preconditioned and this represents a major bottleneck for a successful GPU implementation.

Estimates for solutions to anisotropic elliptic equations with zero order term

Estimates for solutions to homogeneous Dirichlet problems for a class of elliptic equations with zero order term in the form L(u) = g(x, u) + f (x),where the operator L fulfills an anisotropic elliptic condition, are established. Such estimates are obtained in terms of solutions to suitable problems with radially symmetric data, when no sign conditions on g are required.

Validation of community robustness

The large amount of work on community detection and its applications leaves unaddressed one important question: the statistical validation of the results. We present a methodology able to clearly detect the truly significance of the communities identified by some technique, permitting us to discard those that could be merely the consequence of edge positions in the network. Given a community detection method and a network of interest, our procedure examines the stability of the partition recovered against random perturbations of the original graph structure.

Source modeling of ElectroCorticoGraphy (ECoG) data: Stability analysis and spatial filtering

Background: Electrocorticography (ECoG) measures the distribution of the electrical potentials on the cortex produced by the neural currents. A full interpretation of ECoG data requires solving the ill-posed inverse problem of reconstructing the spatio-temporal distribution of the neural currents. This study addresses the ECoG source modeling developing a beamformer method.

Scattering by a Schwarzschild black hole of particles undergoing drag force effects

The scattering of massive particles by a Schwarzschild black hole also undergoing a drag force is considered. The latter is modeled as a viscous force acting on the orbital plane, with components proportional to the associated particle 4-velocity components. The energy and angular momentum losses as well as the dependence of the hyperbolic scattering angle on the strength of the drag are investigated in situations where strong field effects cause large deflections.

Ultrasensitive HCV RNA Quantification in Antiviral Triple Therapy: New Insight on Viral Clearance Dynamics and Treatment Outcome Predictors.

Objectives Identifying the predictive factors of Sustained Virological Response (SVR) represents an important challenge in new interferon-based DAA therapies. Here, we analyzed the kinetics of antiviral response associated with a triple drug regimen, and the association between negative residual viral load at different time points during treatment. Methods Twenty-three HCV genotype 1 (GT 1a n = 11; GT1b n = 12) infected patients were included in the study.