Heavy particle clustering in turbulent flows

Distributions of heavy particles suspended in incompressible turbulent flows are investigated by means of high-resolution direct numerical simulations. It is shown that particles form fractal clusters in the dissipative range, with properties independent of the Reynolds number. Conversely, in the inertial range, the particle distribution is not scale-invariant. It is however shown that deviations from uniformity depends only on a rescaled contraction rate, and not on the local Stokes number given by dimensional analysis.

Rheologic and dynamic behavior of sheared vesicle suspensions

The rheology and dynamics of suspensions of fluid vesicles is investigated by a combination of molecular dynamics and mesoscale hydrodynamics simulations in two dimensions. The vesicle suspension is confined between two no-slip shearing walls. The flow behavior is studied as a function of the shear rate, the volume fraction of vesicles, and the viscosity ratio between inside and outside fluids. Results are obtained for the interactions of two vesicles, the intrinsic viscosity of the suspension, and the cell-free layer near the walls.

Extinction dynamics of a discrete population in an oasis

Understanding the conditions ensuring the persistence of a population is an issue of primary importance in population biology. The first theoretical approach to the problem dates back to the 1950s with the Kierstead, Slobodkin, and Skellam (KiSS) model, namely a continuous reaction-diffusion equation for a population growing on a patch of finite size L surrounded by a deadly environment with infinite mortality, i.e., an oasis in a desert. The main outcome of the model is that only patches above a critical size allow for population persistence.

Acceleration statistics of inertial particles from high resolution DNS turbulence

We present results from recent direct numerical simulations of heavy particle transport in homogeneous, isotropic, fully developed turbulence, with grid resolution up to 5123 and R? ? 185. By following the trajectories of millions of particles with different Stokes numbers, St ? [0.16 : 3.5], we are able to characterize in full detail the statistics of particle acceleration. We focus on the probability density function of the normalised acceleration a/arms and on the behaviour of their rootmean-squared acceleration arms as a function of both St and R?.