MRI denoising by nonlocal means on multi-GPU

A critical issue in image restoration is noise removal, whose state-of-art algorithm, NonLocal Means, is highly demanding in terms of computational time. Aim of the present paper is to boost its performance by an efficient algorithm tailored to GPU hardware architectures. This algorithm adapts itself to several variants of the methodologies in terms of different strategies for estimating the involved filtering parameter, type of noise affecting data, multicomponent signals, spatial dimension of the images. Numerical experiments on brain Magnetic Resonance images are provided.

Looking for central tendencies in the conformational freedom of proteins using NMR measurements

We study the conformational freedom of a protein made by two rigid domains connected by a flexible linker. The conformational freedom is represented as an unknown probability distribution on the space of allowed states. A new algorithm for the calculation of the maximum allowable probability is proposed, which can be extended to any type of measurements. In this paper we use pseudo contact shifts and residual dipolar coupling. We reconstruct a single central tendency in the distribution and discuss in depth the results.

Spread of consensus in self-organized groups of individuals: Hydrodynamics matters

Nature routinely presents us with spectacular demonstrations of organization and orchestrated motion in living species. Efficient information transfer among the individuals is known to be instrumental to the emergence of spatial patterns (e.g. V-shaped formations for birds or diamond-like shapes for fishes), responding to a specific functional goal such as predatory avoidance or energy savings. Such functional patterns materialize whenever individuals appoint one of them as a leader with the task of guiding the group towards a prescribed target destination.

Poiseuille flow in curved spaces

We investigate Poiseuille channel flow through intrinsically curved media, equipped with localized metric perturbations. To this end, we study the flux of a fluid driven through the curved channel in dependence of the spatial deformation, characterized by the parameters of the metric perturbations (amplitude, range, and density). We find that the flux depends only on a specific combination of parameters, which we identify as the average metric perturbation, and derive a universal flux law for the Poiseuille flow.

On the dynamics of a generalized predator-prey system with Z-type control

We apply the Z-control approach to a generalized predator prey system and consider the specific case of indirect control of the prey population. We derive the associated Z-controlled model and investigate its properties from the point of view of the dynamical systems theory. The key role of the design parameter A. for the successful application of the method is stressed and related to specific dynamical properties of the Z-controlled model. Critical values of the design parameter are also found, delimiting the lambda-range for the effectiveness of the Z-method.

Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows

The effects of compressibility on Rayleigh-Taylor instability (RTI) are investigated by inspecting the interplay between thermodynamic and hydrodynamic nonequilibrium phenomena (TNE, HNE, respectively) via a discrete Boltzmann model. Two effective approaches are presented, one tracking the evolution of the local TNE effects and the other focusing on the evolution of the mean temperature of the fluid, to track the complex interfaces separating the bubble and the spike regions of the flow.

Parallel Distributed Breadth First Search on the Kepler Architecture

We present the results obtained by using an evolution of our CUDA-based solution for the exploration, via a breadth first search, of large graphs. This latest version exploits at its best the features of the Kepler architecture and relies on a combination of techniques to reduce both the number of communications among the GPUs and the amount of exchanged data. The final result is a code that can visit more than 800 billion edges in a second by using a cluster equipped with 4,096 Tesla K20X GPUs.