GNSS and SAR Signal Delay in Perturbed Ionospheric D-Region During Solar X-Ray Flares

We investigate the influence of the perturbed (by a solar X-ray flare) ionospheric D-region on the global navigation satellite systems (GNSS) and synthetic aperture radar (SAR) signals. We calculate a signal delay in the D-region based on the low ionospheric monitoring by very-low-frequency (VLF) radio waves. The results show that the ionospheric delay in the perturbed D-region can be important and, therefore, should be taken into account in modeling the ionospheric influence on the GNSS and SAR signal propagation and in calculations relevant for space geodesy.

Cryptanalysis on GPUs with the Cube Attack: Design, Optimization and Performances Gains

The cube attack is a flexible cryptanalysis technique, with a simple and fascinating theoretical implant. It combines offline exhaustive searches over selected tweakable public/IV bits (the sides of the "cube"), with an online key-recovery phase. Although virtually applicable to any cipher, and generally praised by the research community, the real potential of the attack is still in question, and no implementation so far succeeded in breaking a real-world strong cipher. In this paper, we present, validate and analyze the first thorough implementation of the cube attack on a GPU cluster.

Quantum Trajectories for the Dynamics in the Exact Factorization Framework: A Proof-of-Principle Test

In the framework of the exact factorization of the time-dependent electron-nuclear wave function, we investigate the possibility of solving the nuclear time-dependent Schrödinger equation based on trajectories. The nuclear equation is separated in a Hamilton-Jacobi equation for the phase of the wave function, and a continuity equation for its (squared) modulus. For illustrative adiabatic and nonadiabatic one-dimensional models, we implement a procedure to follow the evolution of the nuclear density along the characteristics of the Hamilton-Jacobi equation.

Accuracies of Soil Moisture Estimations Using a Semi-Empirical Model over Bare Soil Agricultural Croplands from Sentinel-1 SAR Data

This study describes a semi-empirical model developed to estimate volumetric soil moisture (<mml:semantics>theta v</mml:semantics>) in bare soils during the dry season (March-May) using C-band (5.42 GHz) synthetic aperture radar (SAR) imagery acquired from the Sentinel-1 European satellite platform at a 20 m spatial resolution. The semi-empirical model was developed using backscatter coefficient (<mml:semantics>sigma degrees dB</mml:semantics>) and in situ soil moisture collected from Siruguppa taluk (sub-district) in the Karnataka state of India.

Scattering of tidally interacting bodies in post-Minkowskian gravity

The post-Minkowskian approach to gravitationally interacting binary systems (i.e., perturbation theory in G, without assuming small velocities) is extended to the computation of the dynamical effects induced by the tidal deformations of two extended bodies, such as neutron stars. Our derivation applies general properties of perturbed actions to the effective field theory description of tidally interacting bodies. We compute several tidal invariants (notably the integrated quadrupolar and octupolar actions) at the fast post-Minkowskian order.