Sixth post-Newtonian local-in-time dynamics of binary systems

Using a recently introduced method [D. Bini, T. Damour, and A. Geralico, Phys. Rev. Lett. 123, 231104 (2019)], which splits the conservative dynamics of gravitationally interacting binary systems into a nonlocal-in-time part and a local-in-time one, we compute the local part of the dynamics at the sixth post-Newtonian (6PN) accuracy. Our strategy combines several theoretical formalisms: post-Newtonian, post-Minkowskian, multipolar-post-Minkowskian, effective-field-theory, gravitational self-force, effective one-body, and Delaunay averaging.

Exit-time approach to epsilon-entropy

An efficient approach to the calculation of the E-entropy is proposed. The method is based on the idea of looking at the information content of a string nf data hv annalyzing the signal only nt thp instants when the fluctuations are larger than a certain threshold is an element of, i.e., by looking at the exit-time statistics. The practical and theoretical advantages of our method with respect to the usual one are shown by the examples of a deterministic map and a self-affine stochastic process.

TLS and GB-RAR Measurements of Vibration Frequencies and Oscillation Amplitudes of Tall Structures: An Application to Wind Towers

This article presents a methodology for the monitoring of tall structures based on the joint use of a terrestrial laser scanner (TLS), configured in line scanner mode, and a ground-based real aperture radar (GB-RAR) interferometer. The methodology provides both natural frequencies and oscillation amplitudes of tall structures. Acquisitions of the surface of the tall structure are performed by the TLS with a high sampling rate: each line scan provides an instantaneous longitudinal section.

Qualitative analysis and numerical approximation of an optimal control model for invasivespecies

Invasive species cause huge amounts of environmental, economic, social and cultural damage in Europe and worldwide. Improving measures to control them is an ongoing challenge, and mathematical modeling and optimization are becoming increasingly popular as a tool to assist management (1; 2; 4). We analyse an optimal control model for the control of invasive species which aims to find the best temporal resource allocation strategy for the population reduction, under a budget constraint (3).

Confidentiality and availability issues in mobile unattended wireless sensor networks

In Mobile Unattended Wireless Sensor Networks (MUWSNs), nodes sense the environment and store the acquired data until the arrival of a trusted data sink. MUWSNs, other than being a reference model for an increasing number of military and civilian applications, also capture a few important characteristics of emerging computing paradigms like Participatory Sensing (PS). In this paper, we start by identifying the main features and issues of MUWSNs, revising the related work in the area and highlighting their shortcomings.

Impaired flickering of the permeability transition pore causes SPG7 spastic paraplegia

Background: Mutations of the mitochondrial protein paraplegin cause hereditary spastic paraplegia type 7 (SPG7), a so-far untreatable degenerative disease of the upper motoneuron with still undefined pathomechanism. The intermittent mitochondrial permeability transition pore (mPTP) opening, called flickering, is an essential process that operates to maintain mitochondrial homeostasis by reducing intra-matrix Ca and reactive oxygen species (ROS) concentration, and is critical for efficient synaptic function.