AMG preconditioners for Linear Solvers towards Extreme Scale

Linear solvers for large and sparse systems are a key element of scientific applications, and their efficient implementation is necessary to harness the computational power of current computers. Algebraic Multigrid (AMG) Preconditioners are a popular ingredient of such linear solvers; this is the motivation for the present work where we examine some recent developments in a package of AMG preconditioners to improve efficiency, scalability, and robustness on extreme-scale problems.

Detweiler's redshift invariant for extended bodies orbiting a Schwarzschild black hole

We compute the first-order self-force contribution to Detweiler's redshift invariant for extended bodies endowed with both dipolar and quadrupolar structure (with spin-induced quadrupole moment) moving along circular orbits on a Schwarzschild background. Our analysis includes effects which arc second order in spin, generalizing previous results for purely spinning particles. The perturbing body is assumed to move on the equatorial plane, the associated spin vector being orthogonal to it.

Numerical simulations of self-diffusiophoretic colloids at fluid interfaces

The dynamics of active colloids is very sensitive to the presence of boundaries and interfaces which therefore can be used to control their motion. Here we analyze the dynamics of active colloids adsorbed at a fluid-fluid interface. By using a mesoscopic numerical approach which relies on an approximated numerical solution of the Navier-Stokes equation, we show that when adsorbed at a fluid interface, an active colloid experiences a net torque even in the absence of a viscosity contrast between the two adjacent fluids.

Spectral Analysis of Saddle-point Matrices from Optimization problems with Elliptic PDE Constraints

The main focus of this paper is the characterization and exploitation of the asymptotic spectrum of the saddle--point matrix sequences arising from the discretization of optimization problems constrained by elliptic partial differential equations. They uncover the existence of an hidden structure in these matrix sequences, namely, they show that these are indeed an example of Generalized Locally Toeplitz (GLT) sequences.

Patient, interrupted: MEG oscillation dynamics reveal temporal dysconnectivity in schizophrenia

Current theories of schizophrenia emphasize the role of altered information integration as the core dysfunction of this illness. While ample neuroimaging evidence for such accounts comes from investigations of spatial connectivity, understanding temporal disruptions is important to fully capture the essence of dysconnectivity in schizophrenia.

Unravelling the role of phoretic and hydrodynamic interactions in active colloidal suspensions

Active fluids comprise a variety of systems composed of elements immersed in a fluid environment which can convert some form of energy into directed motion; as such they are intrinsically out-of-equilibrium in the absence of any external force. A fundamental problem in the physics of active matter concerns the understanding of how the characteristics of autonomous propulsion and agent-agent interactions determine the collective dynamics of the system.

Computing functions of very large matrices with small TT/QTT ranks by quadrature formulas

The computation of matrix functions using quadrature formulas and rational approximations of very large structured matrices using tensor trains (TT), and quantized tensor trains (QTT) is considered here. The focus is on matrices with a small TT/QTT rank. Some analysis of the error produced by the use of the TT/QTT representation and the underlying approximation formula used is also provided.

Sixth post-Newtonian nonlocal-in-time dynamics of binary systems

We complete our previous derivation, at the sixth post-Newtonian (6PN) accuracy, of the local-in-time dynamics of a gravitationally interacting two-body system by giving two gauge-invariant characterizations of its complementary nonlocal-in-time dynamics. On the one hand, we compute the nonlocal part of the scattering angle for hyberboliclike motions; and, on the other hand, we compute the nonlocal part of the averaged (Delaunay) Hamiltonian for ellipticlike motions.

Scattering of tidally interacting bodies in post-Minkowskian gravity

The post-Minkowskian approach to gravitationally interacting binary systems (i.e., perturbation theory in G, without assuming small velocities) is extended to the computation of the dynamical effects induced by the tidal deformations of two extended bodies, such as neutron stars. Our derivation applies general properties of perturbed actions to the effective field theory description of tidally interacting bodies. We compute several tidal invariants (notably the integrated quadrupolar and octupolar actions) at the fast post-Minkowskian order.