Attention Based Subgraph Classification for Link Prediction by Network Re-weighting
Supervised link prediction aims at finding missing links in a network by learning directly from the data suitable criteria for classifying link types into existent or non-existent. Recently, along this line, subgraph-based methods learning a function that maps subgraph patterns to link existence have witnessed great successes. However, these approaches still have drawbacks. First, the construction of the subgraph relies on an arbitrary nodes selection, often ineffective.