Proprietà di continuità per una classe di sistemi ellittici tipo p-Laplaciano

A sharp integrability condition on the right-hand side of the p-Laplace system for all its solutions to be continuous is exhibited. Their uniform continuity is also analyzed and estimates for their modulus of continuity are provided. The relevant estimates are shown to be optimal as the right-hand side ranges in classes of rearrangement-invariant spaces, such as Lebesgue, Lorentz, Lorentz-Zygmund, and Marcinkiewicz spaces, as well as some customary Orlicz spaces.

A general model of coupled drug release and tissue absorption for drug delivery devices

In this paper we present a general model of drug release from a drug delivery device and the subsequent transport in biological tissue. The model incorporates drug diffusion, dissolution and solubility in the polymer coating, coupled with diffusion, convection and reaction in the biological tissue. Each layer contains bound and free drug phases so that the resulting model is a coupled two-phase two-layer system of partial differential equations. One of the novelties is the generality of the model in each layer.

Slicing black hole spacetimes

A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings.

Sales forecasting models in the fresh food supply chain

We address the problem of supply chain management for a set of fresh and highly perishable products. Our activity mainly concerns forecasting sales. The study involves 19 retailers (small and medium size stores) and a set of 156 different fresh products. The available data is made of three year sales for each store from 2011 to 2013. The forecasting activity started from a pre-processing analysis to identify seasonality, cycle and trend components, and data filtering to remove noise.

Fundamental diagrams in traffic flow: the case of heterogeneous kinetic models

Experimental studies on vehicular traffic provide data on quantities like density, flux, and mean speed of the vehicles. However, the diagrams relating these variables (the fundamental and \emph{speed} diagrams) show some peculiarities not yet fully reproduced nor explained by mathematical models. In this paper, resting on the methods of kinetic theory, we introduce a new traffic model which takes into account the heterogeneous nature of the flow of vehicles along a road.